有理数的减法教案

时间:2024-09-03 08:44:59 教案 我要投稿

有理数的减法教案

  作为一名老师,就难以避免地要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编帮大家整理的有理数的减法教案,仅供参考,希望能够帮助到大家。

有理数的减法教案

有理数的减法教案1

  教学目标

  1、 经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题 ,培养抽 象概括能力和口头表达能力。

  教学重点

  运用有理数减法法则做有理数减法运算。

  教学难点

  有理数减法法则的得出。

  教具 学具

  多媒体、教材 、计算器

  教学方法

  研讨法、讲练结合

  教学过程

  一、 引入新课:

  师:下面列出的是连续四周的最高和最低气温:

  第1周 第二周 第三周 第四周

  最高气温 +6℃ 0℃ +4℃ -2℃

  最低气温 +2℃ -5℃ -2℃ - 5℃

  周温差

  求每 周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0 -(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程

  二、 有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3 、自己设计一些有理数的减法,用计算器检验一下你 归纳的'减法法则是否正确。

  举例: (-5)+( )=-2

  得出 (-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而 (-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  三、 法则的应用:

  例1:先做笔算,再 用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1 )原式= -34+(-56)+(+28)

  =-90+(+28)

  = -62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检 测 题

  五、 练习反馈:

  书P411、2、 3

  师:巡视个别指导,订正答案。

  六、小结

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  作业书P50、515、6(作业本上)

  板书

  25有理数的减法(一)

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。 例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

有理数的减法教案2

  教学目标

  1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.

  教学过程

  一、情境导入

  北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是20xx年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?

  《1.3.2有理数的减法》同步练习含答案

  1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的'和的形式是()

  A.-6-7+2-9B.-6-7-2+9

  C.-6+7-2-9D.-6+7-2+9

  2.式子-20+3-5+7的正确读法是()

  A.负20加3减5加7的和

  B.负20加3减负5加正7

  C.负20加3减5加7D.负20加正3减负5加正7

  3.下列交换加数位置的变形中,正确的是()

  A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3

  C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-1

  4.某地冬季一天中午的气温是5℃,下午上升到7℃,受冷空气影响,到夜间气温最低时又下降了9℃,则这天夜间的最低气温是________℃.

  1.3.2有理数的减法》同步练习题(含答案)

  一、选择题

  1.下列等式计算正确的是( )

  A.(-2)+3=-1B.3-(-2)=1

  C.(-3)+(-2)=6D.(-3)+(-2)=-5

  答案D(-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;

  (-3)+(-2)=-5,故选项C错误,选项D正确,故选D.

  2.-3,-14,7的和比它们的绝对值的和小( )

  A.-34B.-10C.10D.34

  答案D可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.

有理数的减法教案3

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一) 重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、理解掌握有理数的减法法则。

  2、会进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1); (2)-3+(-7);

  (3)-10+(+3); (4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  1、师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的'相反数(-3)。

  教法说明

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

  教法说明

  由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

  师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

  师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)教师强调法则:

  (1)减法转化为加法,减数要变成相反数。

  (2)法则适用于任何两有理数相减。

  (3)用字母表示一般形式为:。

  教法说明

  结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。

  3、例题讲解:

  [出示投影1 (例题1、2)]

  例1 计算(1)(-3)-(-5); (2)0-7;

  例2 计算(1)7.2-(-4.8);(2)()-。

  例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:

  (1)转化,

  (2)进行加法运算。

  例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

  教法说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

  师:组织学生自己编题,学生回答。

  教法说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

  (三)尝试反馈,巩固练习

  师:下面大家一起看一组题。

  [出示投影2 (计算题1、2)]

  1、计算(口答)

  (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

  (4)(-4)-9 (5)0-(-5); (6)0-5。

  2、计算

  (1)(-2.5)-5.9; (2)1.9-(-0.6);

有理数的减法教案4

  教学目标

  知识与技能:

  熟记有理数的减法法则,能熟练进行有理数减法运算。

  过程与方法:

  1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;

  2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。

  情感态度价值观:

  4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。

  教学重、难点

  重点:有理数减法法则和运算

  难点及突破:有理数减法法则的推导

  教学用具

  多媒体

  教学过程设计

  一、导入

  我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?

  生:减法

  师:今天我们一起来学习有理数的`减法!

  二、一起研究

  下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表

  城市/°C最低气温/°C

  昆明92

  杭州6-2

  北京-2-12

  温差怎么表示?(温差=-最低气温)

  1.那么怎么表示这一天的温差呢?学生填表回答

  城市表示温差的算式观察到的温差/°C

  昆明9-27

  杭州

  北京

  结论:昆明的温差可表示成9-2=7°C

  杭州的温差可表示成6-(-2)=8°C

  北京的温差可表示成-2-(-12)=10°C

  2.现在我们来看这样一组算式,填空:

  9+________=7; 6+______=8; -2+_______=10.

  3.比较:9-2=7 9+(-2)=7

  6-(-2)=8 6+2=8

  -2-(-12)=10 -2+(+12)=10

  思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。

  怎样把加法转化为减法运算?

  法则:减去一个数,等于加上这个数的相反数。

  4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?

  例1(略)

  注意:减法转化为加法时,减数一定要改变符号

  例2 (略)

  三、练习:

  P28 1、2

  四、小结

  1.理解有理数减法运算的法则。

  2.熟悉有理数减法运算的两个步骤

  3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。

  五、板书设计

  1.6 有理数减法

  1.减法法则:减去一个数,等于加上这个数的相反数

  a-b=a+(-b)

  2.例

有理数的减法教案5

  一、学生起点分析:

  有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。学生对减法运算并不陌生,但在小学阶段多是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义.

  学生的知识技能基础:本节课是在学习了正负数、相反数、有理数的加法运算之后学习的新内容。

  学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些数学活动,解决了一些简单的实际问题,感受到了有理数运算的必要性与作用,具有了一定合作学习的经验,具备了一定的合作与交流的能力。

  二、学习任务分析

  “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1.知识目标:

  经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算.

  2.能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.

  3.情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习.

  为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.

  三、教学过程设计:

  根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  本节课设计了五个教学环节;

  (一) 引入课题:

  (二)新课讲解:

  (三) 巩固练习:

  (四) 课堂小结:

  (五)布置作业

  第一环节 引入课题:

  活动内容 多媒体呈现教科书61页图片,提出问题:乌鲁木齐的最高温度为4℃,最低温度为-3℃,这天乌鲁木齐的温差为多少?你是怎么算的?

  活动目的:根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。

  教学要求与效果:由身边的数学问题引入,感受有理数减法运算的现实意义。

  第二环节(二)新课讲解:

  活动内容:通过对温度计的观察,计算温差,感知有理数减法法则。

  问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗?

  先请同桌两位同学相互讨论交流,然后请2~3个学生发言.

  问题2:如何计算4-(-3)呢?

  先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数· 如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.、

  即X+(-3) =4,因为7+(-3) =4,所以4-(-3) =7 减法 加法

  (+4)-(-3)=+7 (+4)+(+3)=+7

  让学生比较上面这两个算式并讨论后得出:

  (+4)-(-3)=(+4)+(+3)

  再给出以下算式:

  减法 加法

  (+5)-(+2)=+3 (+5)+(-2)=+3

  继续让学生比较上面这两个算式并讨论后得出:

  (+5)-(+2)=(+5)+(-2)

  问题3:请同学们想一想,4十?=7?

  请学生回答,教师板书:4+(+3) = 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:

  4-(-3)=4+(+3).

  这时教师问:你发现这个等式有什么特点?

  学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:

  (1)把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?

  (2)计算9-8,9+(一8),15一7,15+(一7),你发现了什么?

  请小组代表全班汇报,教师在此基础上归纳:

  有理数减法法则:减去一个数,等于加上这个数的相反数.

  问题4:你能够用字母把法则表示出来吗?

  a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性实际运算时会更加方便)

  强调运用法则时:被减数不变,减号变加号,减数变成其相反数

  减数变号(减法=加法)

  活动目的`:《标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用.

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程.

  教学要求与效果:通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让他们的学习方式,争取让每个学生都在同伴的交流中获益。此处也是让学生验证前面所提的猜想的正确性,用字母把减法法则表示出来,有利于学生的理解和记忆。

  第三环节 巩固练习

  活动内容: 让学生完成课本P63的练习1,巩固有理数减法法则的运用,强化学生对这节课的掌握。例1,例2口答,例3题请2个学生上黑板板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。

  例1 计算 :(1) (-3)-(-5); (2) 0 - 7

  例2 计算(1) 7.2 - (-4.8) ;

  (2) (-3 -2 ) - 5

  例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

  活动目的:通过例题教学使学生巩固方法,初步具备解决问题的能力。

  教学要求与效果:讲解时注意让学生复述有理数法减法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。让学生感受8848米这个高度,培养学生的数感。

  第四环节:课堂小结(师生共同完成)

  1.有理数的减法运算法则:

  减去一个数,等于加上这个数的相反数 a-b=a+(-b)

  2.转化的思想方法:

  减法运算转化成加法进行计算

  第五环节:布置课后作业:

  课本习题知识技能的2.3.4和问题解决1,教学目的:通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。

  四、教学设计与反思

  1.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系.

  2.在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际问题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。

有理数的减法教案6

  教学目标

  1.了解有理数加法的意义,理解有理数加法法则的合理性;

  2.能运用有理数加法法则,正确进行有理数加法运算;

  3.经历探索有理数加法法则的过程,感受数学学习的方法;

  4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.

  教学重点

  能运用有理数加法法则,正确进行有理数加法运算.

  教学难点

  经历探索有理数加法法则的过程,感受数学学习的方法.

  教学过程(教师)

  一、创设情境

  小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

  1.试一试

  甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.

  你能把上面比赛的过程及结果用有理数的算式表示出来吗?

  做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

  2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.

  你还能举出一些应用有理数加法的实际例子吗?

  二、探究归纳

  1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.

  用数轴和算式可以将以上过程及结果分别表示为:

  算式:________________________

  2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.

  用数轴和算式可以将以上过程及结果分别表示为:

  算式:________________________

  3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

  请用数轴和算式分别表示以上过程及结果:

  算式:________________________

  仿照上面的做法,请在数轴上呈现下面的算式所表示的`笔尖运动的过程和结果.

  4.观察、思考、讨论、交流并得出有理数加法法则.

  讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

  《2.5有理数的加法与减法》课时练习

  1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?

  2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

  (1)通过计算说明小虫是否回到起点P.

  (2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.

  2.5有理数的加法与减法:同步练习

  1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)

  +17,-9,+7,-15,-3,+11,-6,-8,+5,+16

  (1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?

  (2)养护过程中,最远外离出发点有多远?

  (3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?

有理数的减法教案7

  教学目标:

  1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

  2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

  3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

  教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的'运算律简化运算,

  教学难点:准确、熟练地进行加减混合运算

  教学过程

  一、课前预习

  1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  根据有理数减法法则,有理数的加减混合运算可以统一为加法运算

  例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)

  算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。

  例2.计算:

  (1) -3-5+4 (2)-26+43-24+13-46

  解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]

  (2) (3)(4)

  例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?

  (2)这小组这一天共走了多少千米

  三、学习小结

  这节课你学会了哪几种运算?

  四、随堂练习

  A类

  1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2 计算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B类

  3. 计算 (1) + + ++ (2) + + ++

有理数的减法教案8

  一、学情分析:

  1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

  2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

  二、教材分析:

  教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

  本节课的数学目标是:

  1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

  2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

  三、教学过程设计:

  本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂;第六环节:布置作业。

  第一环节:问题情境,引入新课

  问题:

  (1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

  (2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的.表示法和乙水库水位变化量的表示法。

  设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

  第二环节:探索猜想,发现结论

  问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

  (-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

  (-3)×3=_________;

  (-3)×2=_________;

  (-3)×1=_________;

  (-3)×0=_________。

  (2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

  (-3)×(-1)=_________;

  (-3)×(-2)=_________;

  (-3)×(-3)=_________;

  (-3)×(-4)=_________。

  教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。

  教后反思事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

  (2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

  第三环节:验证明确结论

  问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

  4×(-4)=_________;

  4×(-3)=_________;

  4×(-2)=_________;

  4×(-1)=_________;

  (—4)×0=_________;

  (—4)×1=_________;

  (—4)×2=_________;

  (—4)×(-1)=_________;

  (—4)×(-2)=_________。

  教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

  一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

  教后反思事项:

  (1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

  (2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

  (3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

  第四环节:运用巩固,练习提高

  活动内容:

  (1)1、计算:

  ⑴(-4)×5;⑵(5-)×(-7);

  ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2、计算:

  ⑴(-4)×5×(-0。25);⑵(-3÷5)×(-5÷6)×(-2);

  3、“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

  (4)计算:

  ⑴(-8)×21÷4;⑵4÷5×(-25÷6)×(-7÷10);

  ⑶2÷3×(-5÷4);⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9);⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

  教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

  (2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

  (-1)×2×3×4=_________;

  (-1)×(-2)×3×4=_________;

  (-1)×(-2)×(-3)×4=_________;

  (-1)×(-2)×(-3)×(-4)=_________;

  (-1)×(-2)×(-3)×(-4)×0=_________。

  通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

  第五环节:感悟反思课堂

  问题

  1、本节课大家学会了什么?

  2、有理数乘法法则如何叙述?”

  3、有理数乘法法则的探索采用了什么方法?

  4、你的困惑是什么

  教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

  教后反思事项:学生时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

  第六环节:布置作业

  巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

  预习作业;略

  四、教学反思:

  1、设计条理的问题串,使观察、猜想、验证水到渠成

  2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

  3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。

有理数的减法教案9

  一、知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、

  二、过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、

  三、情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣、

  教学重点、难点与关键

  1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、

  2、难点:省略括号和加号的加法算式的运算方法、

  3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、教具准备

  投影仪、

  四、教学过程

  一、复习提问,引入新课

  1、叙述有理数的加法、减法法则、

  2、计算、

  (1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);

  (4)(—8)—6;(5)5—14、

  五、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、

  六、巩固练习

  1、课本第24页练习、

  (1)题是已写成省略加号的代数和,可运用加法交换律、结合律、

  原式=1+3—4—0。5=0—0。5=—0。5

  (2)题运用加减混合运算律,同号结合、

  原式=—2。4—4。6+3。5+3。5=—7+7=0

  (3)题先把加减混合运算统一为加法运算、

  原式=(—7)+(—5)+(—4)+(+10)

  =—7—5—4+10(省略括号和加号)

  =—16+10

  =—6

  七、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加、总之要认真观察,灵活运用运算律、

  八、作业布置

  1、课本第25页第26页习题1、3第5、6、13题、

  九、板书设计:

  第四课时

  1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、

  归纳:加减混合运算可以统一为加法运算、

  用式子表示为a+b—c=a+b+(—c)、

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

  本课教学反思

  本节课主要采用过程教案法训练学生的听说读写。过程教案法的'理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。

  这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

  在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。

  在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。

有理数的减法教案10

  教学目标

  1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

  3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  教学建议

  (一) 重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

  (二)知识结构

  (三)教法建议

  1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的

  3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

  4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  秋高气爽、瓜果飘香,在这个收获的季节,我们又迎来了一个充满希望的新学期。因此,编辑老师为各位老师准备了这篇20xx初一上册数学第一单元教案,希望可以帮助到您!

  教学目标

  1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

  2.了解倒数概念,会求给定有理数的倒数;

  3.通过将除法运算转化为乘法运算,培养学生的转化的`思想;通过有理数的除法运算,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节教学的重点是熟练进行有理数的除法运算,教学难点是理解有理数的除法法则。

  1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。

  2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。

  在有整除的情况下,应用第二个法则比较方便

  在能整除的情况下,应用第二个法则比较方便。

  教法建议

  1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

  2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

  3.理解倒数的概念

  (1)根据定义乘积为1的两个数互为倒数。

  (2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。

  (3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。

  4.关于倒数的求法要注意:

  (1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.

  (2)正数的倒数是正数,负数的倒数仍是负数.

  (3)负倒数的定义:乘积是-1的两个数互为负倒数.

有理数的减法教案11

  一、知识与能力

  掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

  二、过程与方法

  经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

  三、情感、态度、价值观

  培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

  四、教学重难点

  一)重点:熟练进行有理数的乘除运算

  二)难点:正确进行有理数的乘除运算

  预习导学

  通过看课本1.4的内容,归纳有理数的.乘法法则以及乘法运算律

  五、教学过程

  一)创设情景,谈话导入

  我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

  二)精讲点拨质疑问难

  根据预习内容,同学们回答以下问题:

  1、有理数的乘法法则:

  (1)同号两数相乘___________________________________

  (2)异号两数相乘___________________________________

  (3)0与任何自然数相乘,得____

  2、有理数的乘法运算律:

  (1)乘法交换律:ab=_________

  (2)乘法结合律:(ab)c=_______

  (3)乘法分配律:(a+b)c=________

  3、有理数的除法法则:

  除以一个不等于0的数,等于乘这个数的__________

  比较有理数的乘法,除法法则,发现_________可能转化为__________

有理数的减法教案12

  第1课时

  三维目标

  一、知识与技能

  (1)理解并掌握有理数的减法法则,能进行有理数的减法运算.

  (2)通过把减法运算转化为加法运算,让学生了解转化思想.

  二、过程与方法

  经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.

  三、情感态度与价值观

  体会有理数加法运算律的应用价值.

  教学重、难点与关键

  1.重点:掌握有理数减法法则,能进行有理数的减法运算.

  2.难点:探索有理数减法法则,能正确完成减法到加法的转化.

  3.关键:正确完成减法到加法的转化.

  四、教学过程

  一、复习提问,新课引入

  1.计算.

  (1)(-2.6)+(-3.1)(2)(-2)+3

  2.填空.

  (1)__+6=20(2)20+______=17

  (3)___+(-2)=5(4)(-20)+___=-6

  五、新授

  实际问题中有时还要涉及有理数的减法,例如,某地一天的气温是-3℃~4?℃,这天的温差(最高气温减最低气温,单位:℃)就是4-(-3),?这里用到正数与负数的'减法,你会计算它吗?(鼓励学生探索)

  可以先从温度计看出4℃比-3℃高7℃.

  另外,我们知道减法和加法是互为逆运算.计算4-(-3),?就是要求出一个数x,使x与-3的和等于4,因为7+(-3)=4,所以

  4-(-3)=7①

  另外4+(+3)=7,②

  比较①、②两式,你发现了什么?

  发现:4-(-3)=4+(+3).

  这就是说减法可以转化为加法,如何转化呢?

  减-3相当于加3,即加上“-3”的相反数.

  比较上面的式子,计算下列各式:

  50-20=50+(-20)=

  50-10=50+(-10)=

  50-0=50+0=

  50-(-10)=50+10=

  50-(-20)=50+20=

  这些数减-3的结果与它们加+3的结果仍然相同.

  归纳:通过上述讨论,得出:

  有理数的减法可以转化为加法来进行.“相反数”是转化的桥梁.有理数减法法则:

  减去一个数,等于加上这个数的相反数.

  用式子表示为:a-b=a+(-b).

  注意:减法在运算时有2个要素要发生变化。

  1减号变加号

  2减数变相反数

  例4:计算:

  (1)-3-(-5)(2)7.2-(-4.8)

  (3)0 – 8(4)(-5)-0

  分析:以上是有理数的减法,按减法法则,把减法转化为加法.

  11-3(--5)2411113例3:计算:(1) -0.257-4.47(4)(-3)-5=(-3)+(-5)=-8 24244例2:计算:(1) (-2.5) – 5.9(2)

  强调:减号变加号、减数变相反数,必须同时改变,(4)?题中减数的符号为“+”号,省略没有定.

  综合运用:课本25页,6题

  六、课堂练习

  1:计算:

  (1) 6-9(2)(+4)-(-7)

  (3)(-5)-(-8)(4)0-(-5)

  (5)(-2.5)-5.9(6)1.9-(-0.6)

  2、列式计算:

  (1)比2 ℃低8 ℃的温度

  (2)比-3 ℃低6 ℃的温度

  3、课本26页7、8、10题略

  2.差数一定比被减数小吗?

  提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7.

  七、课堂小结

  引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),?学习有理数减法,关键在于处理好两个“变”字;(1)?改变运算符号──即把减法转化为加法.(2)改变减数的符号──即减数变为它的相反数,?这两个“变”要同时进行,而被减数不变.

  八、作业布置

  1.课本第25页至第26页,习题1.3第3、4、11、12题.

  九、板书设计:

有理数的减法教案13

  一、 教材结构与内容简析

  在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。

  二、 教学目标

  根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的运算能力。

  三、教学建议

  (一)重点、难点分析

  本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.

  (二)教法建议

  1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。

  备注:教学过程我主要说第一小节---去括号

  (三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

  本节课的教学设计环节:

  教学环节 教学活动设计 设计说明

  前提诊测,复习提问1、如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的`本身;2、绝对值检测:随机出五六道小题即可 复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”.

  提出问题,创设情景 把以下数相加、相减

  1、+4,-5,+3,-6,-7,3,-2.5

  2、-3.2,-2.6,+5,+6,-4 在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)

  尝试指导,实施目标 从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)

  题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)

  2、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6);

  +(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);

  -(-7)+(-2.3)-(-5.1)+(-3) 此处要反复练习,并使学生明白去括号后的是省略加号的和式。

  鼓励学生积极发言,增进师生、生生之间的交流、互动.

  形成性测试,检测目标 1、做书18、20、23、24页练习题(只去括号)

  2、利用书上习题1.3复习巩固1、2题的双数题进检测 把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

  归纳总结,纳入知识系统+(),去掉括号后所得结果仍是括号内的数;-(),去掉括号后所得结果是括号内数的相反数。 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题

有理数的减法教案14

  这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

  备课时如果在教学设计方面与实际生活中的问题联系在一起更能激发学生兴趣,

  课堂教学中学生的主体性体现得不好,还需要学生更多的参与到课堂中,主要原因是练习不够,课外作业设计得太单一。教师备课需要与实际生活、教学大纲、学生、教材等联系在一起。

  一、选择题

  1.下列计算正确的是().

  A.(-14)-(+5)= -9 B.0-(-3)=3

  C.(-3)-(-3)= -6 D.(+7)-(-2)=5

  2.(20xx年凉山州)比1小2的数是().

  A.-1 B.-2 C.-3 D.1

  3.下列结论中,正确的是().

  A.有理数减法中,被减数不一定比减数大

  B.减去一个数,等于加上这个数

  C.零减去一个数,仍得这个数

  D.两个相反数相减得0

  4.一个数加-3.6,和为-0.36,那么这个数是().

  A.-2.24 B.-3.96 C.3.24 D.3.96

  5.若 ,且 ,则 是().

  A.正数 B.正数或负数 C.负数 D.0

  6.若两数的和为m,差为n,则m,n之间的关系是().

  A.m=n B.m>n C.m

  二、填空题

  7.减去一个数,等于,也可以表示成a-b=a+.

  8.在括号内填上合适的数:

  (1)(-17)-(+9)= (-17)+(______);(2)2-(-9)=2+(______);

  (3)0-(-9)=0+(______).

  9.月球表面中午的温度是101℃,夜晚的温度是-150℃,那么夜晚的温度比中午低_________℃.

  10.数轴上表示数-3的点与表示数-7的点的距离为.

  三、解答题

  11.计算下列各题:

  (1)(-12)-(-7);(2)2.7-16.7.

  12.已知甲数是4的相反数,乙数比甲数的相反数小7,求乙数比甲数大多少?

  13.若规定 a-b=a-b-1,求(-27.2)- ( -2.2)的值.

  14.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1℃,乙此时在山脚测得温度是5℃,已知该地区每增加100米,气温大约降低0.6℃,这个山峰的高度大约是多少米?

  15.某矿井下A,B,C三区的标高为A(-29.3m),B(-120.5m),C(-38.7m),哪处最高?哪处最低?最高处与最低处相差多少?

  《1.3.2有理数的减法》同步练习题(含答案)

  一、选择题

  1.下列等式计算正确的是( )

  A.(-2)+3=-1 B.3-(-2)=1

  C.(-3)+(-2)=6 D.(-3)+(-2)=-5

  答案 D (-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;

  (-3)+(-2)=-5,故选项C错误,选项D正确,故选D.

  2.-3,-14,7的和比它们的绝对值的.和小( )

  A.-34 B.-10 C.10 D.34

  答案 D 可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.

  《1.3.2有理数的减法》同步练习含答案

  1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是( )

  A.-6-7+2-9 B.-6-7-2+9

  C.-6+7-2-9 D.-6+7-2+9

  2.式子-20+3-5+7的正确读法是( )

  A.负20加3减5加7的和 B.负20加3减负5加正7

  C.负20加3减5加7 D.负20加正3减负5加正7

  3.下列交换加数位置的变形中,正确的是( )

  A.1-4+5-4=1-4+4-5 B.1-2+3-4=2-1+4-3

  C.4-7-5+8=4-5+8-7 D.-3+4-1-2=2+4-3-1

  4.某地冬季一天中午的气温是5 ℃,下午上升到7 ℃,受冷空气影响,到夜间气温最低时又下降了9 ℃,则这天夜间的最低气温是________ ℃.

有理数的减法教案15

  一、知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。

  二、过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。

  三、情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣。

  教学重点、难点与关键

  1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

  2.难点:省略括号和加号的加法算式的运算方法。

  3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式。

  教具准备

  投影仪。

  四、教学过程

  一、复习提问,引入新课

  1.叙述有理数的加法、减法法则。

  2.计算。

  (1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);

  (4)(-8)-6; (5)5-14.

  五、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算。

  例6:计算:(-20)+(+3)-(-5)-(+7)。

  分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =[(-20)+(-7)]+[(+3)+(+5)]

  =-27+(+8)

  =-19

  把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.

  这个式子读作负20、正3、正5、负7的和或读作负20加3加5减7。

  例6的运算过程也可简写为:

  (-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7) (加减法统一为加法)

  =-20+3+5-7 (省略式子中的括号和括号前面的加号)

  =-20-7+3+5 (加法交换律交换时,要连同符号一起交换)

  =-19 (异号两数相减)

  六、巩固练习

  1.课本第24页练习。

  (1)题是已写成省略加号的'代数和,可运用加法交换律、结合律。

  原式=1+3-4-0.5=0-0.5=-0.5

  (2)题运用加减混合运算律,同号结合。

  原式=-2.4-4.6+3.5+3.5=-7+7=0

  (3)题先把加减混合运算统一为加法运算。

  原式=(-7)+(-5)+(-4)+(+10)

  =-7-5-4+10 (省略括号和加号)

  =-16+10

  =-6

  七、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。

  八、作业布置

  1.课本第25页第26页习题1.3第5、6、13题。

  九、板书设计:

  1.3.2 有理数的减法(2)

  第四课时

  1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

【有理数的减法教案】相关文章:

〈有理数的减法〉教案11-21

有理数的加减法教案05-28

有理数的加法教案07-31

加法和减法教案06-28

《有理数的乘法》数学教案07-23

有理数的加减混合运算教案04-02

小数加减法教案 05-22

有理数的加法教案15篇[集合]08-08

有理数的混合运算教案三篇12-25