《分数的意义》教案

时间:2024-08-08 09:20:44 教案 我要投稿

[集合]《分数的意义》教案15篇

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?下面是小编帮大家整理的《分数的意义》教案 ,欢迎阅读,希望大家能够喜欢。

[集合]《分数的意义》教案15篇

《分数的意义》教案 1

  一、教学分析

  (一)内容分析

  《分数的意义》是人教版义务教育课程标准实验教科书五年级下册的教学内容。《分数的意义》是在学生初步认识分数的基础上系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示;本节课学习的重点是让学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。

  (二)学生分析

  五年级的学生在注意力方面,有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都比低年级学生有不同程度的发展。

  在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,具体形象记忆的作用仍非常明显。

  在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。

  在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。

  通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,感受数学就是来源于生活,激发学生的学习兴趣。让学生在认识分数的过程中,应该让学生经历丰富多采的数学学习活动,就是使学生通过亲身实践和自我体验,获得、理解和应用知识、技能,并在数学思考、问题解决、情感与态度方面都得到发展。

  (三)环境分析

  多媒体教室(包括电脑、实物投影)

  二、教学目标

  本节课的教学,单位“1”和分数单位这两个概念非常重要,从直观到抽象,由个别到一般,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得感悟,自己构建这些概念的意义。

  (一)知识与技能:在学生原有分数知识基础上,使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。

  (二)过程与方法:让学生在轻松和谐的氛围中主动参与、积极合作、充分体验、经历认识分数意义的过程,培养学生的抽象、概括能力。

  (三)情感与态度:使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  三、教学重难点

  (一)教学重点:理解分数的意义,认识分数单位。

  (二)教学难点:理解、抽象出单位“1”。

  四、教学方法

  启发谈话法、尝试法、引导发现法、合作交流法、讲练结合法

  五、教学过程

  (一)创设情景,温故引新

  1.出示

  引导学生回忆分数的基础知识

  板书:分数

  【学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道分数的各部分的名称,会读、写简单的分数。通过引导学生回忆,为新知做好铺垫。】

  2.设疑:分数用在什么时候?

  (指名1-2名学生读,如果发现有问题及时纠正)

  师小结:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时用分数来表示。

  【引入分数,使学生感悟分数是适应客观需要而产生的】

  3.课件出示分数的起源

  (通过多媒体的直观展示,激发学生对学习数学的探究欲望。)

  【介绍3000多年前的`古埃及、20xx多年前的中国,以及后来的印度、阿拉伯人所用过的各种分数表示方法。这些多种多样的表示方法或记号,可以让学生体会分数表示方法的多样性及其历史面目,开拓学生的知识面。】

  (二)唤醒已知,探究新知

  1.唤醒已知

  提示:用为例,用自己喜欢的方法表示,并给这几幅图进行分类。

  学生根据以前所学习的知识进行解答

  小组合作,解决分类问题。

  板书小结:一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  2.寻找生活中的分数

  (1)找出图中的单位“1”

  师:你是怎么知道的,或者说你是怎么想的

  (2)寻找教室里的单位“1”

  (3)寻找生活中的单位“1”

  (学生畅所欲言,老师加以肯定)

  师:单位“1”可以很大,也可以很小,那么单位“1”不同,所对应的量也就不同

  3.概括分数的意义

  师小结:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  4.课堂练习:

  (1)判断

  (2)填空

  (3)用直线上的点表示分数

  (三)认知分数单位

  出示课件

  1.以12块糖为例,引导学生动手分分数

  一堆糖,平均分成2份,每份是这堆糖的()

  平均分成3份,2份是这堆糖的()

  平均分成4份,3份是这堆糖的()

  平均分成6份,5份是这堆糖的()

  师:你来试一试吧!完成课堂练习。

  用12个小正方体代替糖果,学生动手操作,并汇报。

  【这一填空练习,既是对分数意义描述的具体化和巩固,又能为紧接着学习分数单位提供具体的实例。】

  2.认识分数单位

  引导发现里有几个

  里有几个

  师小结:把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。

  整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:里有3个,的分数单位是。

  【从分数的现实来源和数学内部来源两方面帮助学生深化对分数的认识】

  (四)迁移类推,巩固认识

  1.填空练习:

  2.巩固:用分数表示下面各图中的涂色部分的

  3.提升练习:完成书上的练习题

  (五)作业:

  任选一个分数,在图中涂色表示出来。

  (六)全课总结,疏理认知

  通过这节课的学习,你有什么收获?

  (七)板书设计

  分数的意义

  把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  4份1份

  4份3份

  分数单位

  (八)教学反思

  分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义。引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。为了能缓解降低难度,努力遵循因材施教的教学原则,以学生的认知水平、学习心理为基础,营造和谐课堂,活化教学内容,合理设计教学过程,较好的完成了这一节的教学活动。课后又做如下反思:

  首先,我个人认为在以下几方面把握的比较好。

  1.调动学生的生活经验和认知基础,促进知识经验的迁移。

  分数在生活中有着广泛的应用,学生已有的生活经验和认知基础就是一种重要的课程资源。发挥多媒体在教学中的作用,创设较为丰富的,贴近学生生活实际的情景,让学生在熟悉的情景中,感悟分数在生活中的体现,体会数学回归生活,让每一个知识点都充满生活的气息。教学时举出大量实例或图形,引导学生运用对分数的初步认识进行分析。分析时紧紧抓住单位“1”的概念展开教学,使学生理解单位“1”不仅可以表示一个东西,一个计量单位,也可以表示一个整体的含义。

  2.注重学生的实践操作,认知、感知分数的意义

  在本课教学中,有意识帮助学生积累生活经验,使学生在实践体验中获得直接的感观,注重所学知识与日常生活的密切联系。每一个数学知识都是在学生亲身经历了知识产生过程、体验了愉快的学习过程之后才能在学生的脑海中生根发芽。

  3.教学面向全体学生,营造和谐课堂氛围

  整节课我创设轻松、愉快的课堂氛围,调动学生的积极性,激发学生的兴趣,让学生在玩中学知识。

  其次,整个教学中我感到在以下几方面的不足:

  1.深入教材,促进有效教学

  在教学过程中,分析时紧紧抓住单位“1”的概念展开教学,使学生理解单位“1”不仅可以表示一个东西,一个计量单位,也可以表示一个整体的含义。通过讨论引导学生初步概括出分数的意义。加强学生说的能力和说的过程的训练,学生才能对知识由整体认识转化为自己的知识。

  2.巧用生成资源,促进有效教学

  在教学过程中,理解单位“1”的含义上多让学生说出自己的见解,会较好的提高本节课的教学效果,这就是说如果巧妙的运用课堂中有效的生成资源,教师的指导主体作用发挥恰当,再通过师生的互动方式加以有效利用,就会再次强化学生对单位“1”的正确认知,这样就能实现知识经验的迁移。

  在今后的课堂教学中,我仍会努力建构和谐氛围,给学生充分的思考空间,创设合理情景,巧妙设计问题进行引导,把重点、难点运用合理的方法有效处理。引导学生主动探究,自主学习获得新知。真正让学生体验到学习的乐趣。

《分数的意义》教案 2

  教学内容:人教版五年级数学下册第45-46页内容。

  设计理念:

  分数的概念是一个原发性概念,学生头脑中没有与之对应的上位或下位的概念,因此在教学时遵循数学概念的形成规律,按照实例观察——分析共性——抽象属性——归纳概念的流程有针对性的建构问题串。让学生通过大量的操作实践、交流碰撞、比较归纳活动,在学生头脑中建立起比较丰富的表象,在此基础上抽象概括出分数的概念。

  教材分析:

  课程标准把“认识分数”知识体系融进两个学段进行:第一次在三年级上册,学生学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;也初步感受了把若干个相同物体组成的一个整体平均分成几份,用几分之一或几分之几表示这样的一份或几份。本节课的学习是把“由许多物体组成的一个整体”抽象成单位“1”的概念,从而概括分数的意义,认识分数单位。本节知识为接下来学习分数的四则运算、运用分数的知识解决问题打下基础。

  教学目标:

  1. 理解分数的意义,认识分数单位。能用分数描述生活中的事情。

  2. 在认识分数意义的过程中,培养学生抽象、概括的能力。

  3.使学生在学习活动中感受数学与生活的密切联系,体验数学的价值,激发学习数学的兴趣。

  教学重点:理解单位“1”的含义。

  教学难点:分数意义的建构。

  教学准备:多媒体课件,助学单。

  教学过程

  一、习旧引新,启迪探索

  1.播放视频“分蛋糕”。

  2.提问:你能从画面中联想到哪些分数?你联想到的分数表达什么意义呢?

  3.学生交流。

  4.提问:关于分数,你们已经知道了什么?

  5.师介绍分数的历史文化。

  6.提问:关于分数,你还想知道什么?

  7.揭示课题。

  【设计意图:数学教学活动必须建立在学生的认知发展水平和已有的`知识经验基础之上。教学中通过视频和一句“你已经知道了什么?”唤起学生已有的知识经验,找到了新知与旧知的链接点。】

  二、 联系生活,探索单位“1”的含义。

  1.出示一个汉堡、一个长方形、一把直尺。

  师:可以用哪一个自然数来表示呢?(板书:1)

  师:我们从数学的角度去思考,还可以把什么说成1呢?

  1个苹果、一盒牛奶……

  师:难道这个1只能代表一个物体,图形或计量单位吗?老师这里有一些卡片,现在放在一起,我们可以说成?(一堆,一摞)

  师:照此类推,这个1还可以表示什么呢?

  一箱苹果、一车苹果……

  2.归纳单位“1”的概念。

  看来,任意个相同实物、图形或计量单位以及由许多物体组成的一个整体,都可以用1来表示,我们给它一个特定的名字叫单位“1”,它已经不单纯是一个数字1了,所以我们给它加上一个双引号。

  3.找生活中的单位“1”。

  那么在生活中,我们还可以把什么看做单位“1”呢?

  一个地球、一个国家、一个宇宙……

  【设计意图:从一个物体引发学生进行拓展思考“一”还可以表示一类物体、一个整体,充分调取学生的生活经验,从而建构单位“1”的概念,这样的过渡对学生而言比较自然。】

  三、自学互助,探索分数意义。

  1.探索分数意义。

  (1)谈话导入:当单位“1”表示一个物体时,同学们会进行平均分,得出分数吗?

  如果单位“1”表示很多的物体,你可以平均分,得出分数吗?

  (2)小组合作,动手在助学单上“分一分”,创造出一个分数。

  (3)展示学生作品,交流分法。

  提问:你是怎么分的?得到了哪个分数?它表示什么意义呢?

  (4)归纳总结分数的意义。

  同学们创造出了这么多的分数,功劳不小。你们能根据自己获取分数的感受,谈谈什么叫分数吗?

  2.认识分数单位。

  自学课本46页,你还知道了分数的那些知识?(分数单位)。

  【设计意图:学生建立分数的概念必须先积累大量的感官经验、操作经验。在操作活动中突破把许多物体看做一个整体进行平均分的新知识点,又通过交流使学生由对分数的感性认识上升到理性认识,这样,概念的建立就是有源之水了。】

  3.探究分数的相对性。

  活动:拿小棒。

  (1)同伴互助,请组内一位同学拿出本组小棒总数的二分之一,互相看一看,你发现了什么?

  (2)猜测:都是铅笔的二分之一,为什么拿出的支数不一样?

  (3)质疑:拿出铅笔的支数多少是由谁来决定?

  (4)验证:小组合作共同验证组内铅笔支数。

  (5)交流归纳:铅笔总数多,拿出的二分之一的具体数量也多;铅笔总数少,拿出的二分之一的具体数量也少。

  【设计意图:通过具体操作活动,直观探究一捆小棒的二分之一所对应“总数”和“具体数量”之间的关系。从而体会同一个分数对应的单位“1”不同,所表示的具体数量也不同。让学生经历体验——感受——猜测——验证——交流归纳”的认知过程,从而提高分析思考、抽象概括的初步逻辑思维能力。】

  四、巩固练习,拓展应用

  1、 基本练习:用分数表示各图中的涂色部分。

  2、 发展练习: 你会想到什么分数?

  3、 提高练习:根据分数想单位“1”。

  【设计意图:螺旋上升式逐层练习,让学生的思考化隐为显,从知识到思考——从表面到深刻——从部分到系统,拓展学生的知识面,掀起了探索知识的高潮,扩大了探索创新的思维之门。】

  五、全课总结。

  分享交流:谈谈你这节课的收获和感受吧!

《分数的意义》教案 3

  教材首先是把分数看成一个数量再根据相关的乘法数量关系即求一个数的几倍用乘法这样的思路,列出了分数乘分数的算式,然后就直接得到了分数乘法算式的意义。省略了由乘法的数量关系的意义是如何过渡到分数乘法的意义的过程。这恰恰是分数乘法的意义的难点。

  学生在学习一个新的问题时,它的思路总是会依附于某一类旧的知识,并同它进行比较,力图寻找共同点并从中找出解决新问题的方法。

  学生在学习分数乘法的意义时首先让学生学会列出分数乘法算式,以一杯水重4/5千克,3/4杯重多少千克为例,在教学中发现好的学生会要根据乘法的数量关系去进行分析及列式,而中等的学生也会模糊的意识到用乘法计算,但是为什么要用乘法则讲不明白,旧的知识对新知的正向迁移能力不强,寻找共性的能力较弱,而差的学生由于归纳数理的能力不强,面对题目中出现的分数,不知所以,会用减法做。

  如何顺利过渡到分数乘法的意义?应让学生在解决相关的分数问题中,运用以前所学过的有关乘法的数量关系及分数的意义、带单位的分数的意义进行感悟,首先从学生已学过的乘法意义着手进行引入,并可通过适当的动手操作等手段强化理解。

  如可以出示类似的问题(出示实物)

  一根绳子长6米,6米的4倍是多少米?

  一根绳子长6米,6米的2/3是多少米?

  一根绳子长6米,6米的5/6是多少米?

  学生尝试列式尝试说说算式的意义

  列式:6*4=意义表示6米的4倍是多少

  6*2/3=意义表示6米的2/3是多少

  6*5/6=意义表示6米的5/6是多少

  计算得数:根据分数乘法的意义直接算出结果

  再根据分数的意义算出结果(让学生画图或用图形进行操作)从而得出第二种算法

  6*4=246*4=24

  6*2/3=46/3*2=4

  6*5/6=5

  学生进行讨论。一个数乘整数表示求一个数的几倍是多少,想想一个数乘以分数表示什么意思?

  此环节的`目的是让学生通过和求一个数的几倍进行对比,去理解一个数乘分数的意义也是求一个数的几分之几。

  第二环节出示课本例题

  运用分数的意义和分数乘法两种方法计算出结果,说明求一个数的几分之几是用乘法计算的,而反过来,如果是一个数乘分数也就表示求这个数的几分之几是多少

  第二环节出示课本例题

  一杯水重4/5千克,3杯水共有多少千克?

  一杯水重4/5千克,1/2杯水共有多少千克?

  一杯水重4/5千克,3/4杯水共有多少千克?

  一杯水重4/5千克,喝了这杯水的3/4,喝了多少千克?

  学生列式并说一说这些分数乘法算式的意义

  注意1/2杯水就是求一杯水的1/2,也就是求4/5的1/2是多少

  3/4杯水就是求一杯水的3/4,就是求4/5千克的3/4是多少

  此环节是分数乘分数的意义,比第一环节的整数乘分数形式的抽象性更进一步,但其意义是相同的。都是表示一个数的几分之几是多少。

  练习:1、课本的做一做

  2、说一说下面分数乘法的意义

  3*2/3表示

  2/3*3表示

  6/13*1/3表示

  1/3*6/13表示

  4/5*1/2表示

  3、计算:

  8的1/3是多少?

  21的3/7是多少?

  6的4/15是多少?

  6是8的几分之几?

  8是6的几倍?

  4、课本第七页第一题

  思考题:()的3/4是12

《分数的意义》教案 4

  教学目标

  1. 认识单位“1”,理解分数的意义及分母、分子的含义。

  2. 培养学生的观察、分析、抽象、概括等思维能力。

  3. 通过层层设疑,不断强化学生的质疑意识,提高学生的质疑能力。

  教学重点:建立单位“1”的概念。

  课前准备:通过各种途径去查找、了解分数是怎样产生的。

  教学过程

  一.创设情景

  课前让同学通过各种途径去查找、了解分数是怎样产生的,有哪些同学已经查找到了相关的信息,能与大家交流吗?

  再请同学们看两个例子。

  1、出示2个实例(课件)

  (1) 这些饼,我们可以用3个来表示,而这些呢可以用4个来表示,再请大家看这半个饼还能用整数来表示吗?

  (2) 用米尺来测量木板的长度,能用整米数来表示吗?

  许多例子都可以告诉我们,在生产和生活中,有时我们通过计算或是测量都是不能得到整数结果的,为了适应客观实际的需要,而产生了新的数——也就是分数(出示)。开始,人们只认识一些简单的.分数,如二分之一、三分之一等。经过很长时间后,才产生像现在这样完善的分数的知识。同学们知道吗?我国还是世界上发明和使用分数比较早的国家之一。

  其实分数对于同学们来说不会太陌生,我们已经对分数有了初步的认识。

  2、 揭示课题:今天这节课我们在分数初步认识的基础上探究分数的意义。

  二、互动探究

  (一)复习把一个物体或一个计量单位平均分

  首先让我们一起来回忆一下:

  1. 用课件展示。(3个例子)

  (1) 把一块饼平均分成2份,每份是它的二分之一。

  (2) 把一张正方形的纸平均4份。

  (3) 把一条线段平均分成5份,

  2. 小结:以前我们学习了把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,都可以用分数表示。

  (二)学习把一个整体平均分

  1.想一想:

  在现实生活中是不是只能把一个物体进行平均分?请举例。

  师小结:在现实生活中不仅能把一个物体进行平均分,还可以把许多物体看作一个整体来平均分。

  2.思考:

  这里有一堆苹果,你能拿出它的1/4 吗?你是怎样想的?

  把什么看作一个整体?怎么分的?能完整的叙述一下吗?

  把这些苹果看作一个整体,平均分成4份,每份的一个苹果就是这些苹果的1/4。

  3.讨论:

  把6只熊猫平均分,有几种分法?每份用什么分数表示?

  (1)汇报分的情况。

  (2)说说你们是怎样想的?注意叙述完整。

  把什么看作一个整体?怎么分的?

  把六只熊猫看作一个整体,平均分成6份,每份的一只熊猫就是这个整体的1/6。要表示这个整体的2份呢?3份?5份?

  还可以怎样分呢?

  (三)归纳分数的意义

  1.观察:刚才用来平均分的物体与以前的有什么不同呢?

  以前是把一个物体平均分,刚才是把许多物体看作一个整体来平均分。

  2.启发:

  像这样平均分的一个物体、一个计量单位或一个整体我们都可以用自然数1来表示,通常把它叫做单位“1”。我们所看到的1个饼、1张纸、4个苹果、6只熊猫都可以看作单位“1”。

  那么在生活中,我们还可以把哪些看作单位“1”呢?

  3.我们已经了解了什么是单位“1”,下面请同学们讨论一下:什么叫做分数?

  (1)汇报。

  (2)出示分数的意义,看有没有不明白的地方。

  出示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  师:单位“1”为什么要用引号?

  “1”不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个“1”很特殊,所以我们给它加上引号,把它称为单位“1”。

  你认为在这句话中,还有哪些字或词比较重要?

  (四)分数各部份的名称及意义

  我们知道了分数的意义,下面来看看分数的组成

  出示:小红旗

  指名回答用什么分数来表示?说说想法。

  4/9这个分数,指名说出分数各部份的名称。

  结合图上的例子,说说各部份所表示的意义。

  课件展示。

  三、巩固发展

  我们已经学习了分数的意义以及分子、分母所表示的含义,不知同学们学习得怎样,我想考考大家,有没有信心?

  1、看图:

  (1)(做一做)谁能说说 3/5的意义?这里的单位 “1”指的是什么?

  (2)分母3分别表示什么?分子2分别表示什么?

  2、练习:

  (1)练习十八 1、2、题(课件出示)

  (2)判断:

  (1)4/7是把单位“1”分成7份,表示这样4份的数。

  (2)男生人数占全班人数的 ,是把全班人数看作单位 “1”。

  (3)把一堆苹果平均分成6份,表示这样5份的数是6/5 。

  (3)把全班48个同学平均分成6组,每组8个同学。

  3个同学是这个小组人数的几分之几?

  3个同学是全班人数的几分之几?

  讨论:同样是3个同学,为什么分别用3/8和3/48来表示。

  四、总结

  这节课我们学习了什么?它的内容是什么?我们在用分数的时候需要注意些什么呢?

《分数的意义》教案 5

  一、教学目标:

  1、知识技能:通过学习,让学生理解百分数的意义,能正确地读写百分数,运用百分数解决简单的实际问题。

  2、过程与方法:通过观察思考、比较分析、综合概括、组织学生探索,让学生主动参与、学会讨论交流、与人合作。

  3、情感态度、价值观:结合相关信息,对学生进行自信、勇敢地培养。

  二、教学重点:

  百分数的意义。

  三、教学难点:

  百分数与分数的联系与区别。

  四、教法、学法:

  1、在教学思想上努力体现以学生为学习的主人,教师只是学习的组织者、引导者和合作者,让学生始终参与教学活动中。在教学方法上,采用游戏、小组合作探究等教学方法,从扶到放,让学生在游戏、尝试、探索、练习、实践操作过程中悟出百分数的意义。

  2、在教学设计上,注意重点内容的处理,使学生在主动获取知识的同时,提高学生的观察能力、逻辑推理能力、动手能力和解决问题的能力,培养学生的创新意识。

  3、有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,也是本节课中学生学习百分数的主要方法。

  五、《百分数的意义和写法》前置性作业

  1、收集生活中的百分数。

  2、填表

  六、教学过程:

  (一)课前三分钟交流

  讲故事《大胆的小猴》,并与大家交流,对学生进行自信、勇敢的培养。

  设计意图:课前三分钟交流是孩子们展示的舞台,在这短短的三分钟时间里带给自己快乐、自由和成长。这个环节是师生的最爱。学生自信的主持,精彩的展示,内容的丰富,真可谓色、香、味俱全的大餐。学生展示的内容丰富,可以是数学古诗、数学家的故事、数学要闻、数学成语、数学符号的由来等等形式多样。真是万紫千红,各有千秋。

  (二)小组交流、探究、合作学习

  1、展示课前收集的生活中的百分数。

  设计意图:小学生学习的数学应是生活中的数学,是学生“自己的数学”。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。数学学习内容远离生活无疑是导致学生对数学没有兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉。有鉴于此,数学的教与学应该联系生活,注重现实体验,变传统的“ 书本中学数学”为“生活中做数学”,体现以解决问题为中心的生本教育理念。

  2、小组交流百分数的意义。

  百分数表示一个数是另一个数的百分之几。是一个量与另一个量的比较。两个量比较才能产生百分数,只有一个数量是不能产生百分数的。百分数表示的是两个数比较的结果,所以也叫百分率或百分比。

  设计意图:尊重学生的主体足够自主的空间、足够活动的机会的教学,让学生自探明之,自求得之,倡导合作学习、探究学习的教学,才能有效地增进学生的发展,创建一种开放的、浸润的、积极互动的课堂文化。

  3、小组交流百分数的读法和写法。

  读百分数时注意要读成百分之几,不能读成一百分之几。写百分数时,通常先写分子,再写百分号,并注意%的两个小圆圈要均匀且不能过大,以免和分子混淆。

  在半分钟内写十个百分数,看看写出的百分数占总数的百分之几,并用自己喜欢的一个百分数说一句话。

  设计意图:通过小组交流并展示生活中找到的百分数的读法和写法,又加深理解了百分数的意义。

  4、小组交流百分数与分数的区别。

  (1)意义不同

  分数代表一个数值,也可以代表一个分率。而百分数只能代表一个分率。

  (2)读法不同

  分数读作几分之几,百分数读成百分之几,不能读成一百分之几。

  (3)写法不同,百分数在分子后面加上百分号就行了,而不是写成分数的形式。

  (4)分母不同

  分数的分母可以是任何一个大于0的自然数。而百分数的分母规定是100.

  (5)分子不同

  分数的分子必须是自然数。百分数的分子可以是小数,整数,可以大于100,可以小于100.

  (6)百分数不可以约分,分数可以约分。

  (7)分数单位不同,分数的单位是几分之一,而百分数的单位只能是百分之一

  设计意图:百分数源于分数,而又有别于分数。实践证明,学生认识这一点非常困难,这是长期学习的种属概念负迁移所致。学生会误认为分数与百分数是包含关系,分数有的属性,百分数也一定具有。为了跨越这一认识上的误区,我采用了小组探究交流的方式进行学习,使学生区分清楚百分数和分数是不一样的。

  5、生活中的应用

  (1)经典文化中的百分数。

  百发百中——100% 百里挑一——1%

  (2)做游戏。

  石头 剪刀 布

  规则:两人十次,想一想,你赢了对方几次?赢的次数占总次数的百分之几?

  设计意图:学生通过找成语中的百分数和做游戏,已能找出生活中的'百分数,并能将百分数应用到平时玩的游戏中。所以此环节承上启下,意在让学生意识到生活离不开数学,数学是有用的,既有利于培养学生的数学意识,又体现“学生活中的数学、学有用的数学”,符合生本教育的理念,在生活中找例子。

  生本教育数学课堂练习是一堂数学课的重要组成部分,是进一步深入理解知识、掌握技能技巧、培养积极的情感和态度、促进学生深层次发展的有效途径;所以一节数学课,练习是否有效,将是一节课的点睛之笔。所以课堂练习要设计有挑战性习题,可以通过游戏、猜谜、闯关练习等形式,吸引学生的无意注意,当学生沉迷在问题的情境之中时,他们的无意注意就会转化为有意注意并趋于主导地位,从而达到主动探究的目的。

  6、总结

  请告诉大家你这节课学习情绪的比率。

  愉快占( )%

  紧张占( )%

  遗憾占( )%

  设计意图:这一环节通过谈话的方式让不同水平的学生谈心情,让学生回顾参与学习活动的全过程,有利于反馈信息,检查效果。同时在学生总结学习的过程中激发学习的兴趣,为他们的终身学习打下了基础。在学生再次主动质疑中,提高了学生的质疑能力,让学生的学习因问题而精彩起来,延续下去。

  老师对大家在这节课的表现是百分之百的满意,知不足者方能进步,相信咱们六年级的同学们只要百分之百的相信自己,百分之百的付出努力,就百分之百的成功。最后,老师把“成功 = 99%的勤奋 + 1%的天分”这句名言送给大家,祝同学们的理想百分之百的能够实现。

《分数的意义》教案 6

  教学目标

  (1)进一步理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质。

  (2)能正确地约分和通分,能正确地比较分数的大小,能正确地进行分数和小数的互化。

  (3)能正确地解答“求一个数是另一个数的几分之几”的应用题。

  教学重点、难点

  重点、难点:分数的意义和性质。

  教具、学具准备

  教 学过程

  备 注

  一、知识整理

  1、分数的意义整理

  (1)提问:什么是分数?分数与除法有什么关系?

  (2)练习:说出下列分数的意义、分数单位及有几个这样的分数单位:

  1/45/61/8千克4/7米

  A、学生回答并提问:在“1/8千克”和“4/7米”中,把什么看作单位“1”?

  B、把“5/6”和“4/7米”改写成除法算式,怎么写?从除法的角度,如何来理解这两个分数的意义?

  2、分数的基本性质整理。

  (1)出示:1/2=()/85/7=20/()1又30/45=1又()/()()/20=6。8=9/()

  A、学生回答。

  B、这道题用到什么知识?什么是分数的基本性质?

  (2)将“商不变性质”与“分数的基本性质”的内容添入下面的表格中:(全体练P159第12题中(4))

  商不变性质分数的基本性质

  [][]

  反馈后提问:它们之间有什么联系?学生回答后接着问:那么。“商不变性质”就是“分数的基本性质”吗?为什么?

  (3)练习:

  ①()/18=5/6=20/()=()÷12约等于()(保留两位小数)

  ②填上大于、小于或等与:

  4/7()5/147/11()29/4421/35()3/532/60()2/3

  问:你是怎么比较的?

  教学过程

  备 注

  二、基本练习

  1、A、把单位“1”平均分成5份,表示这样的3份数是()。

  把4吨平均分成11份,表示这样的2份的数是(),表示这样的3份是()吨。

  B、2又5/6的分数单位是(),它有()个这样的分数单位,9个这样的单位组成的'数是();

  C、把7/8的分数单位扩大2倍是(),把它的分数单位缩小2倍是()。

  2、比较分数的大小,课本P160第14题。

  (1)学生练习

  (2)反馈练习结果后讨论:

  11/22()7/825/40()20/321又3/20()1.151.75()1又5/6分别用什么方法比较大小来得方便?为什么?

  (3)方法小结:

  A、异分母分数比较大小,一般用通分或约分的方法进行;

  B、分数与小数比较大小,一般化成小数比较方便些/

  4、列式解答:

  甲数是40,乙数是32,丙数是48,求:

  (1)甲数是乙数的几倍?

  (2)乙数是丙数的几分之几?

  (3)甲数是乙、丙两数之和的几分之几?

  (4)丙数是甲、丙两数之和的几分之几?

  A、学生全体练习

  B、反馈:师生讨论列式与结果。

  C、小结:求一个数是另一个数的几倍或几分之几,关键是什么?方法怎样?这两类题目有什么共同点和不同点?

  三、综合练习

  1、课本P158第12题。

  2、课本P159第13题。

  学生练习后反馈说理。

  3、独立作业:P160第15、16、17题。

  四、课堂作业

  《作业本》

  理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质中,如“1千米的3/4和3千米的1/4是相等的”有些学生理解不通;还有如看图用分数表示阴影中什么时候用带分数,什么时候用假分数,也有些学生分不清。

《分数的意义》教案 7

  课堂上需要解决的问题:(按本节课的顺序)

  (1)分数各部分的名称、读法、写法。 (2)“单位1”的理解。

  (3)分数的意义。 (4)分数的“单位”。

  重点:所授之识均为重点。难点:既知是难点,上课之前已想办法通过合理的教学手段予以克服,上课之时何来难点。

  教学过程:

  一、拉近学生距离:向学生问好(用激情洋溢的情绪调动学生的情绪,并引导学生观察、读懂教师的表情、动作,使学生被老师的行为所吸引。)

  二、有效引导,引出分数,解决“写法、读法、各部分名称、初步理解意义”这4个任务。

  1、大家会分东西吗,下面看老师分,大家要注意看,要弄清楚以下几个问题?

  A老师分的是什么“东西”?

  B我是怎么分的?

  C分成了几份?

  D红颜色的占其中的几份?

  连起来说一句话:老师把( )( )分成了( )份。红颜色的占其中的( )份

  (1)将一段1米长的线段平均分成了3份,红的占其中的2份。

  老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。

  (2)将一个长方形平均分成6份。红的占其中的5份。

  老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。

  (3)将8只羊平均分成4份,红色的羊占其中的(1)分。

  老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。

  2、引导:

  (1) 大家注意,我们把下面这句话的意思用简单的形式来表示:

  6和9的最小公倍数是18。→=18

  数学中许多较为复杂的语言我们可以用一个简单的形式来表示,大家觉得爽不爽?

  (2)我们今天再来爽一爽

  A课件回到将一条线段平均分成3段的画面。

  “老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。”这句话实在太长了,我现在用一个简单的方法来表示,大家说好不好?引出分数“三分之二”( ),(在显示过程当中明确分数的写法。)教师明题,这个数叫分数,它读作“三分之二”下面的`3叫做“分母”上面的“2”叫做“分子”(该部分全部由教师在黑板上板书。)教师提问:分母表示什么意思?分子表示什么意思?反过来问一下:在这里“三分之二”表示什么意思呢?→表示把1米长的线段平均分成3份,表示其中的两份。

  B课件回到将一个长方形平均分成6份,红的占其中5份的画面。

  将“老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。”用分数表示。(已经可以叫学生自己说、写了)之后让学生回答:分母表示什么意思?分子表示什么意思?反过来问:“六分之五”这个分数表示什么意思呢?→表示把一个长方形平均分成6份,表示其中的5份。

  C课件回到将8只羊平均分4份,红色的占其中的1份的画面。

  将“老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。”这句话用分数表示。由学生来完成。反过来问→“四分之一表示什么意思呢?→表示把8只羊平均分成4份,表示其中的1份。

  三、单位“1”的认识

  给出另一个新的分数“二分之一”问它表示什么意思呢?

  教师对学生的回答表示认可,但提出疑问:你难道知道一定是分这个东西吗?听听其他同学的意见。

  A可以分西瓜 B可以分菠箩 C可以分小鸭……

  总之,我们很多东西都可以分,但在分的时候,我们都把他们当成“一个整体”来看,是“一个整体”所以我们可以给他们取一个统一的名字:单位“1”,大家说好不好,不好,你取取看。1为什么加引号的问题解决。

  (通过课件,使学生明确单位“1”)

  四、深入理解分数意义,分数的单位的认识

  1、练习巩固:课件演示

  (1) 上面是一个空心的圆,下面是一个分数:四分之三

  让学生说说:要你做什么?把这个圆平均分成4份,用颜色表示(取)其中的三份。(或:把单位“1”平均分成4份,表示其中的3份。)

  回答清楚以后由学生自己完成。

  (2) 出示一条线段:下面是一个分数:十分之七

  让学生说说:要你做什么?(让学生用两种方式来回答。)再由学生完成。(除了用颜色涂以外,教师教另一种表示方法,为教学例1做准备。

  (3)出示例1,让学生弄请清和(2)的区别,明确是将0~1之间的线段分一下。然后完成例1。

  完成其余2~3题。

  2、分数单位的认识

  1)分母是3的最小分数想一想是几?分母6的最小分数是几?分母是8的最小分数是几?

  通过观察,使学生认识到这些分数的分子都是“1”,取一个共同的名字叫“分数单位”

  2)练习

  三分之一()是哪些分数的分数单位?说一说各含有几个分数单位。

  六分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  八分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  练一练第5题。

  练一练第6题。

  五、巩固练习:完成书上其余练习。教师巡视批阅。

  六、课堂总结:

  以一个分数为例,说一说(1)分数各部分的名称、读法、写法。

  (2)分数的意义。

  (3)“单位1”的理解。

  (4)分数的“单位”。

  六、拓展题

  有一位老伯将17头牛留给他的三个儿子,他给大儿子二分之一,给二儿子三分之一,给小儿子九分之一,你会帮他们分吗?怎么分?他们各得几头?

  七、作业布置:

  《作业本》

《分数的意义》教案 8

  分数的意义

  分数的意义 总42(电36)

  教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义.

  教学难点:使同学理解"分数"的意义,弄清分数单位的含义.

  教学课型:新授课

  教具准备:课件

  教学过程:

  一、创设情景,温故引新

  1,提问:A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的'问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二、联系实际,探究新知

  自主学习,整体感知分数的知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影局部.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 假如这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义

  ⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三、加强练习,深化概念

  竞赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四、家作

  1,P88 .1,2

  2,P89 .3

  板书设计: 分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

《分数的意义》教案 9

  教学目标:

  1、通过教学使学生理解单位“1”不仅是一个物体,也可以是一些物体。

  2、学生能掌握单位“1”平均分成若干份,表示其中一份或几份的数叫分数。

  3、学生知道单位“1”的几分之几是多少,某一个量是整体的几分之几。

  4、理解并掌握分数单位。

  教学重点难点:

  认识单位“1”,知道一些物体也可以看成是一个整体。

  教学流程预设:

  一、复习引入

  1、出示3/4,“认识它吗?”

  2、介绍分数的出现:当人们在测量、分物或计算中不能刚好得到整数结果时,常常用分数来表示.

  3、分数相关知识回顾:大家都了解分数的哪些知识?

  (1)、怎样读分数

  (2)、分数各部分名称(分子、分母、分数线)

  (3)、怎样写分数:请同学们在草稿纸上写一个你喜欢的分数,写完后同桌间互相读一读,并说说其各部分的名称。

  师:今天,我们继续来深入的了解分数。

  二、新授

  (一)、探索分数的意义

  师:首先,让我们来创造几个分数吧!请你用课前准备好的材料来表示一个分数,独立完成后组内成员互相说一说(每个人都必须说):

  (1)、你创造了哪个分数?(2)、这个分数表示什么含义?

  (学生交流,教师参与)

  1、班内讨论交流

  师:谁愿意来介绍你所创造的分数?

  生:若干,介绍。

  (教师提问:一个物体:

  ①你创造了哪个分数?表示什么含义?<建立模板>

  ②分子、分母分别表示什么含义?

  ③空白部分可以用什么分数来表示?

  一些物体:

  ①同“一个物体”的3个问题

  ②取其中的5份可以用什么分数表示?5/6是几枚扣子?

  ③3枚扣子可以用哪些分数来表示,分别说说它们的意义。)

  <用彩笔表示你是怎么分这些物品的,渗透“整体”概念>

  2、例子分类,总结

  师:大家说的都很不错。刚才我们创造了很多分数,下面我们来给这些物品分分类。

  生:一个物体;一些物体。(教师引导:老师是这么分的,谁能看出我分类的依据?)

  师:刚才大家在展示的时候,很多同学在用到一些物体的时候,用彩笔把所有物体都圈起来了,那为什么只有一个物体的时候我们一般都不圈呢?

  生:把它们看作是一个整体。

  师:我们发现,无论是一个物体或一些物体,都可以看成是一个整体。把这个整体平均分成若干份,其中的'一份或几份就可以用分数来表示。

  (教师慢慢出示,考虑到学生的接受能力)

  这就是分数的意义,也是这节课重点要学习的内容。

  (揭题,全班齐读)

  师:一个整体可以用自然数“1”表示,通常叫做单位“1”。因此,分数的意义也可以表示成“把单位“1”平均分成若干份,其中的一份或几份就可以用分数来表示。”

  师:我们思考一下,刚才同学们举的这些例子,分别都把什么看作单位“1”?

  生:......

  师:在我们身边的一些物品中,可以把什么看作是单位“1”?

  生:......

  师:所以说,单位“1”可以是一个物体,也可以是一些物体。

  3、练习

  课本P62做一做(本题把什么看作是单位“1”?)

  (二)、分数单位

  1、阅读“课本P62做一做”下面一段话,并回答其提出的问题。

  2、什么叫分数单位。

  3、“课本P62做一做”中所出现分数的分数单位,其包含了几个这样的分数单位。

  4、同桌间互相说说上课一开始所写分数的分数单位,以及其包含了几个这样的分数单位。

  三、练习巩固

  课本P631、2、3

  (1、说说这个分数的意义?

  (2、把什么看作单位“1”?

  (3、分数单位是什么,其包含了几个这样的分数单位?

  (4、3/8表示几个月饼?4个月饼可以用什么分数来表示?

  四、课堂小结

  师:今天我们又学习了关于分数的哪些知识?

  生:......

  板书:分数的意义

  把一个整体(单位“1”)平均分成若干份,其中的一份或几份,用分数表示。

  一个长方形433/4

  一个圆211/2

  5支铅笔522/5

  12枚回形针622/6(1/3)

  6枚扣子655/6

  把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

《分数的意义》教案 10

  教学目标:

  使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义。

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义。

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义。

  教学课型:

  新授课

  教具准备:

  课件

  教学过程:

  创设情景,温故引新

  1,提问:

  A,大家知道分数吗谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决。即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示。

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的'知识。

  (1)相互交流:

  ①关于分数我已经知道了什么请把已知道的讲给同学们听。

  (2)自学理解:

  ①关于分数,自学后我又知道了些什么

  ②我还有什么不明白的地方呢

  ③关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义。

  (1)用分数表示下面各图中的阴影部分。[课件1]

  (2)填空。[课件2]

  ①把一条线段平均分成5份,1份是它的()/();4份是它的()/()。

  ②把一块饼平均分成2份,每份是它的()/()。

  ③把一个正方形平均分成4份。1份是它的()/();3份是它的()/()

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影。

  用一张正方形的纸,折出它的3/8,并涂上阴影。

  (3)说说下列分数所表示的意义。[课件4]

  5/7 3/8 3/()()/9()/()

  3,小结。

  我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位"1"。

  板书:一个物体

  单位"1"一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  三,加强练习,深化概念

  比赛:请两位同学站起来。

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的-------这两位同学是全班人数的-------

  四,家作

  1,P88 。1,2

  2,P89 。3

  板书设计:

  分数的意义

  一个物体

  单位"1"一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

《分数的意义》教案 11

  教学目标:

  使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学课型:

  新授课

  教具准备:

  课件

  教学过程:

  创设情景,温故引新

  1,提问:

  A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影部分.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义

  ⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的.意义如果是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三,加强练习,深化概念

  比赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四,家作

  1,P88 .1,2

  2,P89 .3

  板书设计:

  分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

《分数的意义》教案 12

  教学目标:

  1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

  2、在学习过程中,培养学生的思维能力和应用意识。

  3、体会数学与生活的密切联系,进一步增强学好数学的信心。

  教学重点:

  理解单位“1”和分数的意义。

  教学难点:

  理解单位“1”和分数的意义。

  教学准备:

  教具准备:自制教学课件

  学具准备:小棒、练习纸

  设计意图:

  《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

  作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

  教学过程:

  一、谈话导入

  1、通过师生之间的谈话引出分数。

  2、关于分数,你已经知道了什么?

  3、提出要求:

  师:从刚才的表现可以看出**班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

  二、分数的产生

  1、板书课题

  师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

  师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

  三、理解分数的意义

  1.理解一个整体

  (1)、找出各种材料的1/4。

  师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

  师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

  然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

  (2)、汇报交流

  教师进行规范:

  生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

  生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

  突出整体:

  师:这里的1/4是如何得到的呢?

  生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

  师:这是他的想法,还有不同想法吗?

  生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

  师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

  进行知识迁移:

  生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

  (3)小结:

  提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

  不同点:材料不同。

  跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

  相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

  2、理解单位“1”。

  (1)深化理解一个整体

  学生自主创作:

  师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

  交流汇报:

  师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

  师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

  学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

  (2)揭示单位“1”。

  师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

  师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

  师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

  师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

  师:同学们真是了不起!已经能很快地找到单位1了。

  3.理解分子、分母的含义

  (1)、找其他分数

  师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

  那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

  (2)、汇报交流

  师:谁愿意和大家交流一下你所找到的分数?

  生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

  (3)比较:

  师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

  师:观察这些分数,你发现了什么?

  生:分母都是4

  师:为什么分母都是4呢?

  生:因为都是平均分成了4份

  师:把什么平均分成4份?——单位“1”。

  师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

  师:分母其实就是表示——平均分的份数

  师:同学们的观察力可不一般呐。还有什么发现吗?

  生:分子各不相同,都差1

  师:分母为什么会不一样呢?

  生:取的份数不同

  师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

  师:分子其实就是表示——取的份数

  师:同学们不仅观察能力强,分析、概括能力也很出色。

  4.揭示分数的意义。

  (1)逐步理解分数的意义

  师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

  现在老师再写一个分数5/9,你能说说它的含义吗?

  生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

  师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

  生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

  师:说的真好。如果不是平均分成9份,板书5/(),那么它的含义是什么呢?

  生:把单位“1”平均分成很多份,取这样的5份,就是5/()。

  师:很多份可以是几份?——2份,3份……

  师:我们可以用一个词来表示(板书:若干份)

  师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??

  生:把单位“1”平均分成若干份,取这样的若干份,就是()/()

  师:可以取这样的一份,也可以取这样的……几份。

  小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

  (2)理解分数单位

  师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

  1/4,2/4,3/4,4/4的分数单位就是——1/4

  师:5/9的'分数单位?

  生:1/9

  师:5/99

  生:1/99

  师:()/1000

  生:1/1000

  师:老师都还没说分子呢,你怎么就知道分数单位了?

  生:分数单位就是表示一份的数

  师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

  师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

  5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

  四、练习巩固。

  师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

  1.填一填

  (1)说说3/5的意义

  (2)同意吗?

  (3)3/8的分数单位是多少?有几个这样的分数单位。

  2、点击生活

  哪位同学愿意来读一读,并说说其中分数的意义。

  (1)、我校五年级学生约占全校学生的1/6

  (2)、长江约3/5的水体受到不同程度的污染

  师:还有几分之几的水体没受污染呢?

  师:受污染水体多还是没受污染的水体多?——怎么想的?

  师:有什么想说的?——要保护环境

  师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

  师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

  (3)、姚明的头部高度约占他身高的1/8

  师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

  五、总结全课、质疑问难

  师:这节课我们学习了什么?你有什么收获?还有什么问题?

《分数的意义》教案 13

  教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  3、培养学生的应用意识。

  教学重难点

  1、理解归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  教学工具

  ppt

  教学过程

  一、激趣引入

  师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?

  课件出示唐僧、孙悟空、沙僧的图片

  师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?

  引出平均分,让学生列式:8÷4=2(张)

  总量÷份数=每份数

  二、探究新知

  1、老猪化得一张饼,如何分给4人呢?

  师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。

  把1个饼平均分给4个人,每个人分得多少个?

  师:这道题该怎样列式呢?(学生列式,师板书:1÷4)

  师:1÷4表示什么意思?

  生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。

  师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

  生:1/4个。(师板书)

  师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

  教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4 。

  师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?

  生:1/4个。

  师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。

  教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

  (课件出示例2)

  指名读题

  师:谁能列出算式?

  生:3÷4(师板书)

  师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

  小组操作,教师巡视指导。

  师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

  (小组边汇报,边演示)

  小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

  师:你能用一个式子表示一下吗?

  小组1:1÷4=1/4块。

  师:好。请接着汇报吧。

  小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

  师:大家认为他们的'方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

  师:还有没有和这组方法不同的?

  小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

  师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

  师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

  师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

  学生小组讨论

  生:我们发现,被除数就是分子,除数就是分母。

  师:你能试着表示出来吗?

  生:被除数÷除数=被除数/除数(师板书)

  师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

  生1:a÷b=a/b(师板书)

  生2:老师,我认为还要写上b≠0。

  师:为什么b≠0?

  生:因为b表示除数,除数不能为0。

  生:分数的分母也不能等于0。

  师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

  师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

  学生观察算式,思考

  生:可以。比如3/4=3÷4。

  课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,

  分数线相当于除号。

  师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

  请学生观察黑板算式,和同学讨论。

  学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

  三、巩固练习

  1、用分数表示下列算式的商

  (1)3÷2 = ( )

  (2)2÷9 = ( )

  (3)7÷8 = ( )

  (4)5÷12 = ( )

  (5)31÷5 = ( )

  (6)m÷n = ( )n≠0

  2、试一试

  ( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )

  3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

  4、填空

  9厘米=( )米59秒=( )分

  13分=( )时5时=( )日

  5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

  四、全课总结

《分数的意义》教案 14

  教学目标:

  使学生能比较熟练地把低级单位的名数聚成高级单位的名数,正确地解答求一个数是另一个数的'几分之几的应用题。能比较熟练地比较两个分数的大小。

  教学过程:

  一、基本练习

  1.复习有关单位的进率。(长度、面积、体积、质量等)

  2.P80,1

  3.说一说比较两个或三个分数的大小的方法。

  4.P80,2,3看清要求,分清大小。

  二、应用练习

  1.怎样求一个数是另一个数的几分之几?要注意什么?和求一个数是另一个数的几倍有什么相同和不同的地方?

  2.P81,4—6

  三、巩固提高

  1.选条件编应用题:苹果有5箱,梨有10箱,桃有20箱。

  2.根据自己的实际编一道求一个数是另一个数的几分之几的应用题。

  3.小结。

《分数的意义》教案 15

  一、复习导入

  1、根据分数与除法的关系填空。

  被除数÷除数说说:分数与除法的关系。

  2、提问:80÷20的商是多少?

  被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?

  回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)

  (商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)

  二、新课

  1、动手做数学。

  (1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。

  (涂上阴影)

  (2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?

  (3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。

  2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?

  (1)观察并研究分子、分母是按什么规律变化的?

  1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。

  (2)学生发现并归纳得出的规律(揭示:分数的基本性质):

  分数的分子和分母同时乘以或者除以相同的数分数的大小不变。

  (3)理解意义。

  提问:刚才我们根据分数的意义来说明分数的'基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?

  先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)

  将分数的基本性质补充完整。

  3、应用性质、解决问题。

  (1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。

  (2)把3/4和15/24化成分母是8而大小不变的分数。

  要求:独立思考解答、交流方法

  (3)师生一起总结方法:

  看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。

  (4)独立完成练一练。

  重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。

  变化的依据是分数的基本性质

  (5)口答练习十八第2题并说明判断的依据。

  4、全课总结:你能将这节课的内容及重点归纳概括一下吗?

  5、作业:完成练习十四

  理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。

  三、难点点拨

  在运用分数的基本性质时,会出现以下几种错误:

  ①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。

  ②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。

  在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。

  ③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的

【《分数的意义》教案 】相关文章:

《分数的意义》教案06-08

《分数的意义》教案03-11

分数的意义教案01-23

分数的意义教案优秀09-12

《分数的意义》教案范文01-15

推荐分数的意义教案01-03

[必备]《分数的意义》教案07-26

《分数的意义》教案优秀02-22

《分数的意义》教案15篇03-18

关于分数的意义教案模板08-23