五年级数学教案:梯形面积计算公式的推导

时间:2024-06-06 08:43:06 教案 我要投稿
  • 相关推荐

五年级数学教案:梯形面积计算公式的推导

  作为一位兢兢业业的人民教师,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。我们该怎么去写教案呢?以下是小编精心整理的五年级数学教案:梯形面积计算公式的推导,仅供参考,欢迎大家阅读。

五年级数学教案:梯形面积计算公式的推导

  教学目标:理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。

  通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。

  教具准备:三个大小完全一样的梯形。

  教学过程:

  一、复习:

  ⒈平行四边形的面积公式是什么?

  ⒉三角形的面积公式是什么?它是通过怎样的转换推导出来的?为什么要÷2?

  ⒊求下列图形的面积(只列式)

  ⑴已知平行四边形的底3米,高2.4米,求面积。

  ⑵已知三角形的底2.5米,高0.8米,求它的面积。

  二、新授

  ⒈问题导入。

  左图是一个梯形。它的上底3厘米,下底5厘米,高是4厘米,想一想:你能依照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它面积吗?

  板书课题:梯形面积的计算

  ⒉指导操作实验,推导梯形面积公式。

  ⑴拿出两个完全相同的梯形看课本第80页图示,按照与三角形转化类似的方法旋转平移。

  指导:①把两个完全相同的梯形重叠。②怎样旋转上面一个梯形?③再怎样移动?

  按①重合②旋转③平移的步骤边设问、边操作,指名口述。

  ⑵观察分析。

  A.拼成的是什么图形?这个图形的面积与原梯形的面积是什么关系?为什么有这种倍数关系存在?

  B.深入比较:

  ①拼成的平行四边形的底跟原梯形的两底是什么关系?

  ②平行四边形的高与原梯形的高又是什么关系?

  导出公式:

  平行四边形的面积=底×高

  梯形的面积=(上底+下底)×高÷2

  ⑶自我梳理:

  ①填写教材80页中横线上的内容。

  ②联系三角形的面积公式,分析理解:为什么两个公式都有一个÷2?

  ③全班齐记公式两遍,计算前面的问题,把计算过程填写在课本上。

  ⒊引导学生用字母公式表示梯形的面积公式。

  S=(a+b)h÷2

  三、巩固练习

  ⒈求梯形的面积:

  ①上底13米,下底15米,高4米。

  ②上底13分米,下底2.7米,高1.5米。

  ③上底25米,下底14.5米,与两底垂直的一腰10米。

  ⒉完成做一做中的二小题。

  ⒊练习十九第4题。

  四、总结

  ⒈这节课又解决了什么新问题?

  ⒉梯形的面积公式是什么?与三角形比较,有什么共性?解题时要特别注意什么?

  五、作业

  练习十九第1、2、3题

  六、板书设计:

  梯形面积的计算

  七、教后感:

《五年级数学教案:梯形面积计算公式的推导.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【五年级数学教案:梯形面积计算公式的推导】相关文章:

《梯形的面积》教学反思04-13

中班数学教案:认识梯形07-07

五年级数学教案:《三角形面积的计算》06-02

面积与面积单位教案05-31

《梯形的认识》教学反思08-28

中班认识梯形教案12-09

拼梯形中班教案06-07

《认识梯形》教案与反思03-03

面积的教案11-19

有关面积和面积单位教案4篇10-13

五年级数学教案:梯形面积计算公式的推导

  作为一位兢兢业业的人民教师,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。我们该怎么去写教案呢?以下是小编精心整理的五年级数学教案:梯形面积计算公式的推导,仅供参考,欢迎大家阅读。

五年级数学教案:梯形面积计算公式的推导

  教学目标:理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。

  通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。

  教具准备:三个大小完全一样的梯形。

  教学过程:

  一、复习:

  ⒈平行四边形的面积公式是什么?

  ⒉三角形的面积公式是什么?它是通过怎样的转换推导出来的?为什么要÷2?

  ⒊求下列图形的面积(只列式)

  ⑴已知平行四边形的底3米,高2.4米,求面积。

  ⑵已知三角形的底2.5米,高0.8米,求它的面积。

  二、新授

  ⒈问题导入。

  左图是一个梯形。它的上底3厘米,下底5厘米,高是4厘米,想一想:你能依照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它面积吗?

  板书课题:梯形面积的计算

  ⒉指导操作实验,推导梯形面积公式。

  ⑴拿出两个完全相同的梯形看课本第80页图示,按照与三角形转化类似的方法旋转平移。

  指导:①把两个完全相同的梯形重叠。②怎样旋转上面一个梯形?③再怎样移动?

  按①重合②旋转③平移的步骤边设问、边操作,指名口述。

  ⑵观察分析。

  A.拼成的是什么图形?这个图形的面积与原梯形的面积是什么关系?为什么有这种倍数关系存在?

  B.深入比较:

  ①拼成的平行四边形的底跟原梯形的两底是什么关系?

  ②平行四边形的高与原梯形的高又是什么关系?

  导出公式:

  平行四边形的面积=底×高

  梯形的面积=(上底+下底)×高÷2

  ⑶自我梳理:

  ①填写教材80页中横线上的内容。

  ②联系三角形的面积公式,分析理解:为什么两个公式都有一个÷2?

  ③全班齐记公式两遍,计算前面的问题,把计算过程填写在课本上。

  ⒊引导学生用字母公式表示梯形的面积公式。

  S=(a+b)h÷2

  三、巩固练习

  ⒈求梯形的面积:

  ①上底13米,下底15米,高4米。

  ②上底13分米,下底2.7米,高1.5米。

  ③上底25米,下底14.5米,与两底垂直的一腰10米。

  ⒉完成做一做中的二小题。

  ⒊练习十九第4题。

  四、总结

  ⒈这节课又解决了什么新问题?

  ⒉梯形的面积公式是什么?与三角形比较,有什么共性?解题时要特别注意什么?

  五、作业

  练习十九第1、2、3题

  六、板书设计:

  梯形面积的计算

  七、教后感: