- 相关推荐
一次函数教案
作为一位不辞辛劳的人民教师,就难以避免地要准备教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的一次函数教案,希望能够帮助到大家。
一次函数教案1
一、教学目标
知识与技能目标
1.初步了解作函数图象的一般步骤;
2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;
3.初步了解函数表达式与图象之间的关系。
过程与方法目标
经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。
情感与态度目标
1.在作图的过程中,体会数学的美;
2.经历作图过程,培养学生尊重科学,实事求是的作风。
二、教材分析
本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。
教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。
教学难点:一次函数及图象之间的对应关系。
三、学情分析
函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。
四、教学流程
一、复习引入
下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。
二、新课讲解
把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
下面我们来作一次函数y = x+1的图象
分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的`值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。
解:列表:
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。
三、做一做
(1)仿照上例,作出一次函数y= ?2x+5的图象。
师:回顾刚才的作图过程,经历了几个步骤?
生:经历了列表、描点、连线这三个步骤。
师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。
师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。
(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5
四、议一议
(1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?
(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?
(3)一次函数y=kx+b的图象有什么特点?
一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b
例1做出下列函数的图象
教师点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和X轴、 y轴的交点,在列表计算时,分别令X=0,y=0就可计算出这两点的坐标。正比例函数当X=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。
练一练:作出下列函数的图象:
(1)y= ?5x+2,???? (2)y= ?x
(3)y=2x?1,(4)y=5x
五、课堂小结
这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。
六、课后练习
随堂练习习题6.3
五、教学反思
本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。
一次函数教案2
教学目标:
认知目标:1.了解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题.
2.学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的.
能力情感目标:经历不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证.
教学重点:一次函数与一元一次不等式的关系的理解.
教学难点:利用一次函数的图象确定一元一次不等式的解集.
教学过程:
一、探究新知:
通过上节课的学习,我们已经知道“解一元一次方程ax+b=0”与“求自变量为何值时,一次函数y=ax+b的值为0”是同一个问题.现在我们来看看:
(1)以下两个问题是否为同一个问题?
①解不等式:2x-4>0
②当x为何值时,函数y=2x-4的值大于0?
(2)你如何利用函数的图象来说明②?
(3)“解不等式2x-4<0”可以与怎样的.一次函数问题是同一的?怎样在图象上加以说明?
归纳:解一元一次不等式ax+b>0(或ax+b<0)可以看作:当一次函数y=ax+b的值大(小)于0时,求自变量响应的取值范围.
二、应用新知:
1.练习:P42练习1(3)(4)
2.例2 用画函数图象的方法解不等式5x+4>2x+10.
思考:我们应该画出什么函数的图象来解?
思路1:将不等式化为3x-6>0,然后画出函数y=3x-6的图象.
思路2:将不等式5x+4>2x+10的两边分别看作两个一次函数,画出直线y=5x+4和直线y=2x+10,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时
5x+4>2x+10.
三、巩固练习
1.P42练习2(2)
2.P45习题11.3第3、4题
四、
五、布置作业
一次函数教案3
一、教材分析
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.
二、学情分析
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.
三、目标分析
1.教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法.
过程与方法目标
(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
2.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
3.教学难点
数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.
第一环节: 设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的`函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节 自主探索方程组的解与图像之间的关系
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.
第四环节 反馈练习
内容:1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).
(A)4 (B)5 (C)6 (D)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况.
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.
第六环节 作业布置
习题7.7
附: 板书设计
六、教学反思
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.
一次函数教案4
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的`情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
2、旅游问题
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
2、布置作业
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。
四、教学设计反思
1、贯穿一个原则以学生为主体的原则
2、突出一个思想数形结合的思想
3、体现一个价值数学建模的价值
4、渗透一个意识应用数学的意识
《一次函数与二元一次方程(组)》教案
教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程
(一)引入新课
多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课
1、探究一次函数与二元一次方程的关系
填空:二元一次方程 可以转化为 ________。
思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
2、探究一次函数图像与二元一次方程组的关系
(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。
解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题
(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。
(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。
5、旅游问题
古城荆州历史悠久,文化灿烂。
今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?
一次函数教案5
关键词:高中数学“学案导学”
一、学案的编写
1.编写的原则
学案是导学的载体,有什么样的学案就有什么样的课堂导学。理清教与学之间的关系,实现教为主导、学为主体的原则,努力给学生提供更多的自学、自问、自做、自练的方法和机会,要针对不同的对象编写不同的学案,确保把学生放在主体地位。使学生真正成为学习的主人,增强对学习的兴趣。
编写学案的主要目的就是培养学生自主探究学习的能力。因此,学案的编写要有利于学生进行探索学习,从而激活学生的思维,让学生在问题的显现和解决过程中体验到成功的喜悦。
教学目标应体现教师对教育本质和目的的正确理解。好的教学目标是一种全新的知识观,这种新的知识观不是现成的真理和结论,而应是让学生去发现真理和获得结论的过程,使学生在发现真理和获得结论的过程中培养创造力。学案的编写应该服从学生身心发展的特点和实际需要,充分考虑和适应不同层次学生的实际能力和知识水平,使学案具有较大的弹性和适应性。
2.学案的内容
学案内容必须能使学生建立牢固的基本知识和基本技能。内容的编写要紧扣教学目标,符合学生的'认识层次,不能是知识点的单一重复。编写学案时,要强调内容创新,以培养学生的创新思维能力。应当采用启发式,使学生“跳跳摘桃子”,在获取知识的过程中能发现各种知识之间的联系,受到启发,触发联想,产生迁移和连结,形成新的观点和理论,达到认识上的飞跃。制定的目标,既要切实可行,又要使学生感到跳一下能摸得着。知识构成可以分成基本线索和基础知识两部分。线索是对一节课内容的高度概括,编写时,它一般以填空的形式出现,让学生在预习的过程中去完成。基础知识是学案的核心部分,主要包括知识结构框架、基本知识点、教师的点拨和设疑、印证的材料等。
学案要清楚完整地反映一节课所要求掌握的知识点以及应培养的能力。学案上,要给学生留出记笔记和做小结的地方,以便学生写自己的心得、体会和疑问,以利于学生的自我调节和提高。
二、学案教学的操作
教师在讲课的前一天把学案发给学生,让学生在课下预习。通过预习,使学生明确学习的目标、要学的内容、教师的授课意图、教师要提的问题、自己不懂的地方以及听课的重点等。学生带着问题上课,可大大提高听课的效率。学生在学习的过程中,教师进行适当的引导,不仅能使学生不断的体验成功,维持持久的学习动力,而且学生在教师的引导下,也能缩短获取知识的时间,提高学习效率,从而培养探索问题的能力。在教学时,教师参照教案,按照学案授课。学生在教师指导下按照学案进行学与练。
三、学案范例
函数的零点学案
【预习要点及要求】
1.理解函数零点的概念。
2.会判定二次函数零点的个数。
3.会求函数的零点。
4.掌握函数零点的性质。
5.能结合二次函数图象判断一元二次方程式根存在性及根的个数。
6.理解函数零点与方程式根的关系。
7.会用零点性质解决实际问题。
【知识再现】
1.如何判一元二次方程式实根个数?
2.二次函数顶点坐标,对称轴分别是什么?
【概念探究】
阅读课本完成下列问题
1.已知函数,=0,>0。
叫做函数的零点。
2.请你写出零点的定义。
3.如何求函数的零点?
4.函数的零点与图像什么关系?
【例题解析】
1.阅读课本完成例题。
例:求函数的零点,并画出它的图象。
2.由上例函数值大于0,小于0,等于0时自变量取值范围分别是什么?
3.请思考求函数零点对作函数简图有什么作用?
【总结点拨】
对概念理解及对例题的解释
1.不是所有函数都有零点
2.二次函数零点个数的判定转化为二次方程实根的个数的判定。
3.函数零点有变量零点和不变量零点。
4.求三次函数零点,关键是正确的因式分解,作图像可先由零点分析出函数值的正负变化情况,再适当取点作出图像。
【例题讲解】
例1.函数仅有一个零点,求实数的取值范围。
例2.函数零点所在大致区间是()
A.(0,1)B.(1,2)C.(2,3)D.(3,4)
例3.关于的二次方程,若方程式有两根,其中一根在区间内,另一根在(1,2)内,求的范围。
【当堂练习】
1.下列函数中在[1,2]上有零点的是()
A. B.
C. D.
2.若方程在(0,1)内恰有一个实根,则的取值范围是()
A. B. C. D.
3.函数,若,则在上零点的个数为()
A.至多有一个B.有一个或两个C.有且只有一个D.一个也没有
4.已知函数是R上的奇函数,其零点,……,则= 。
5.一次函数在[0,1]无零点,则取值范围为。
6.函数有两个零点,且都大于2,求的取值范围。
四、实施学案导学应注意的事项
1.注意显性目标和隐性目标:①知识目标和能力目标是写在学案上的,属显性目标,主要通过学生自学完成;②情感目标和意志目标是隐性目标,不能写在学案上,要靠教师适时调控,在融洽的师生关系中激发兴趣,培养学生的意志等。
一次函数教案6
一、学情分析:
学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.
二、 学习目标:
本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
1.初步理解二元一次方程和一次函数两种数学模型之间的关系;
2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;
3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.
教学重点
二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;
教学难点
通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系
1. 某水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.
(1) 请找出自变量和因变量
(2) 你能列出X,Y的关系式吗?
(3) X,Y的取值范围是什么?
(4) 在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围).
2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?
(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?
(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?
(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?
x+y=5与 y=?x?5表示的关系相同
一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.
目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节 自主探索方程组与一次函数两种数学模型之间的关系
探究方程与函数的相互转化
1.两个一次函数图象的交点坐标是相应的二元
一次方程组的解
(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?
(2)两个函数的交点坐标适合哪个方程?
?x?y?5(3).解方程组?验证一下你的发现。 2x?y?1?
练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。
2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。
?x?y?2(1)解?
?2x?y?5(2)以方程x+y=2
(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?
(5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,
由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.
练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。
第三环节模型应用
1.某公司要印制产品宣传材料.
1500元制版费. 甲印刷厂:每份材料收1元印制费, 另收 乙印刷厂:每份材料收2.5元印制费, 不收制版费.若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙
印刷厂的费用。
(1) 请分别表示出两个印刷厂费用与X的关系式。
(2) 在同一直角坐标系中画出函数的图象。
(3) 如何根据印刷材料的份数选择印刷厂比较合算?
第四环节 模型特例
想一想
内容:在同一直角坐标系内, 一次函数y = x + 1 和 y = x - 2 的图象(教材
?x?y??1124页图5-2)有怎样的位置关系?方程组?解的情况如何?你发现了什x?y?2?
么?
二元一次方程的解和相应的两条直线的关系2.
(1)观察发现直线平行无交点;
(2)小组研究计算发现方程组无解;
(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;
(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。
目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的`有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯.
进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节 课堂小结
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
以二元一次方程的解为坐标的点都在相应的函数图像上;
一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
方程组的解是对应的两条直线的交点坐标;
两条直线的交点坐标是对应的方程组的解;
第六环节 作业布置
习题5.7
一次函数教案7
一、教学目标
知识与技能目标
1、继续巩固一次函数的作图方法;
2、结合一次函数的图像,掌握一次函数及其图像的简单性质。
过程与方法目标
1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;
2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。
情感与态度目标
经历一次函数及性质的探索过程,在合作与交流活动中发展学生的.合作意识和能力。
二、教材分析
本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。
教学重点:结合一次函数的图像,研究一次函数的简单性质。
教学难点:一次函数性质的应用。
三、学情分析
学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。
四、教学过程
(一)做一做
在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。
(二)议一议
上述四个函数中,随着x值的增大,y的值分别如何变化?
学生:有的在增大,有的在减小。
师:哪些一次函数随x的增大y在增大;哪些一次函数随x的增大y在减小,是什么在影响这个变化?
学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。
师:当k>0时,一次函数的图象经过哪些象限?
当k<0时,一次函数的图象经过哪些象限?
一次函数教案8
一、目的要求
1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析
1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
三、教学过程
复习提问:
1、什么是函数?
2、函数有哪几种表示方法?
3、举出几个函数的例子。
新课讲解:
可以选用提问时学生举出的'例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:
(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)
(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)
(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)
(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的层层设问,最后给出一次函数的定义。
一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。
对这个定义,要注意:
(1)x是变量,k,b是常数;
(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)
由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。
在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
写成式子是(一定)
需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。
其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。
课堂练习:
教科书13、4节练习第1题.
一次函数教案9
【学习目标】
1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;
2、学会用含一个变量的代数式表示另一个变量;
3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;
4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定
学习过程:
【前置自学】
问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.
1.请同学们根据题意填写下表:
t/时12345t
s/千米
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含t的式子表示s.__s=_________________t的取值范围是
这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?
1.请同学们根据题意填写下表:
售出票数(张)早场150午场206晚场310x
收入y (元)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示y.__y=_________________x的取值范围是
这个问题反映了票房收入_________随售票张数_________的变化过程.
问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?
1.请同学们根据题意填写下表:
所挂重物(kg)12345m
受力后的弹簧长度L(cm)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含m的式子表示L.__L=_________________m的取值范围是
这个问题反映了_________随_________的变化过程.
问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r? 关系式:________
1.请同学们根据题意填写下表:
面积s(cm2)102030s
半径r(cm)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含s的式子表示r.__r=_________________s的取值范围是
这个问题反映了___ _ 随_ __的变化过程.
问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为Sm2,怎样用含有x的式子表示S呢?
1.请同学们根据题意填写下表:
长x(m)1234x
面积s(m2)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示s. _______________x的取值范围是
这个问题反映了矩形的___ _ 随_ __的变化过程.
【展示交流】
小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如……),有些量的数值是始终不变的(如……)。
得出结论: 在一个变化过程中,我们称数值发生变化的量为________;
在一个变化过程中,我们称数值始终不变的量为________;
(一)观察探究:
1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.
2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)
归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。
3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们看下面两个问题,通过观察、思考、讨论后回答:
(1)下图是体检时的心电图.其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的对应值吗?
(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表
(二)归纳概念:
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是_________,y是x的________.如果当x=a时y=b,那么b叫做当自变量的值为a时的_________.
举例说明:
问题一问题二问题三问题四问题五
自变量
自变量的函数
函数解析式
【达标拓展】
1、若球体体积为V,半径为R,则V= R3.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,R的取值范围是
2、校园里栽下一棵小树高1.8米,以后每年长0.3米,则n年后的树高L与年数n之间的函数关系式__________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,n的取值范围是
3、在男子1500米赛跑中,运动员的平均速度v= ,则这个关系式中变量是_______、_______,常量是________.自变量是 , 是 的函数,自变量的取值范围是
4、已知2x-3y=1,若把y看成x的函数,则可以表示为___________.其中变量是_____、_____,常量是________.自变量是 , 是 的函数,x的取值范围是
5、等腰△ABC中,AB=AC,则顶角y与底角x之间的函数关系式为_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,x的取值范围是
6、汽车开始行驶时油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q升与行驶时间t小时的关系是_____________.其中变量是_______、_______,常量是________.自变量是 , 是 的函数,t的取值范围是
【评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
14.1.3函数的图象(一)
【学习目标】
会观察函数图象,从函数图像中获取信息,解决问题。
【学习重难点】
初步掌握画函数图象的方法;通过观察、分析函数图象获取信息.
【前置自学】
1、如图一,是北京春季某一天的气温T随时间t变化的图象,看图回答:
(1)气温最高是_______℃,在_______时,气温最低是_______℃,在______时;
(2)12时的气温是_______℃,20时的气温是_______℃;
(3)气温为-2℃的是在_______时;
(4)气温不断下降的时间是在______________;
(5)气温持续不变的时间是在______________。
2、小明的 爷爷吃过晚饭后,出门散步,再报亭看了一会儿报纸
才回家,小明绘制了爷爷离家的路程s(米)与外出的时间t(分)之间的关系图
(图二)
(1)报亭离爷爷家________米;
(2)爷爷在报亭看了________分钟报纸;
【合作探究】
图三反映的过程是:小明从家去菜地浇水,又去玉米地锄地,然后回家,。其中x表
示时间,y表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上。
根据图像回答下列问题:
(1)菜地离小明家多远?小明家到菜地用了多少时间?
(2)小明给菜地浇水用了多少时间?
(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间?
(4)小明给玉米地除草用了多少时间?
(5)玉米地离小明家多远?小明从玉米地回家的平均速度是多少?
【达标拓展】
1、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).
2、小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.下面图形中表示小红爷爷离家的时间与外出距离之间的关系是( )
3、有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按先共同的速度将水排尽,则游泳池的存水量为V(立方米)随时间t(小时)变化的大致图像是( )
4、图中的折线表示一骑车人离家的距离y与时间x的关系。骑车人9:00离家,15:00回家,请你根据这个折线图回答下列问题:
(1)这个人什么时间离家最远?这时他离家多远?
(2)何时他开始第一次休息?休息多长时间?这时
他离家多远?
(3)11:00~12:30他骑了多少千米?
(4)他再9:00~10:30和10:30~12~30的平均
速度各是多少?
(5)他返家时的平均速度是多少?
(6)14:00时他离家多远?何时他距家10千米?
5、王教授和孙子小强经常一起进行早锻炼,主要活动是爬.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开脚的距离(米)与爬所用时间(分)的关系(从小强开始爬时计时),看图回答下列问题:
(1)小强让爷爷先上多少米?
(2)顶高多少米?谁先爬上顶?
(3)小强用多少时间追上爷爷?
(4)谁的速度大,大多少?
【评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.1.3 函数图像(二)
【学习目标】
1、会用描点法画出函数的图像。
2、画函数图像的步骤:(1)列表;(2)描点;(3)连线。
【学习重难点】
会用描点法画函数的图象
【前置自学】
例1 画出函数y= x2的图象. 分析:要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些 自变量的值,并求出对应的函数值.(x的取值一定要在它的取值范围内)
解:(1)取x的自变量一些值,例如x=-3,-2,-1,0,1,2,3,。。。。,并且计算出对应的函数值,为方便表达,我们列表如下:
x。。。-3-2-1 0 123。。。
y。。。 。。。
由此,我们得到一系列的有序实数对:。。。,( ),( ),( ),
(2)在直角坐标系中描出这些有序实数对的对应点
(3)描完点之后,用光滑的曲线依次把这些点连起,便可得到这个函数的图象。
这里画函数图象的方法我们称为__________,步骤为:__________________。
【展示交流】
1、在所给的直角坐标系中画出函数y= x的图象(先填写下表,再描点、连线).
x-3-2-10123
2、画出下列函数的图像
【达标拓展】
1、矩形的周长是8cm,设一边长为x cm,另一边长为y cm.
(1)求y关于x的函数关系式,并写出自变量x的取值范围;
(2)在给出的坐标系中,作出函数图像。
2、王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式y= 击球,球正好进洞.其中,y(m)是球的飞行高度,x(m)是球飞出的水平距离.
(1)试画出高尔夫球飞行的路线;
(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?
解:(1) 列表如下:
从图象上看,高尔夫球的最大飞行高度是______m,球的起点与洞之间的距离是_____m。
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.1.3 函数图像(三)
【学习目标】
1、会根据题目中题意或图表写出函数解析式;
2、根据函数解析式解决问题。
【学习重难点】
根据函数解析式解决问题,学会确定自变量的取值范围
【前置自学】
例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减小,平均耗油量为0.1 L / km。
(1)写出表示y与x的函数关系式,这样的式子叫做函数解析式。
(2)指出自变量x的取值范围;
(3)汽车行驶200km时,邮箱中还有多少汽油?
练习:拖拉机开始工作时,邮箱中有油30L,每小时耗油5L。
(1)写出邮箱中的余油量Q(L)与工作时间t(h)之间的函数关系式;
(2)求出自变量t的取值范围;
(3)画出函数图象;
(4)根据图像回答拖拉机工作2小时后,邮箱余油是多少?若余油10L,拖拉机工作了几小时?
【展示交流】
例2:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。
t / 时012345
y / 米1010.510.1010.1510.20xx.25
(1)由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;
(2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?
练习:有一根弹簧最多可挂10kg重的物体,测得该弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系:
x(kg)012345
y(cm)1212.51313.51414.5
(1)写出y与x的函数关系式,并求出自变量的取值范围;
(2)画出函数图像;
(3)根据函数图像回答,当弹簧长为16.5cm时,所挂的物体质量是多少kg?当所挂物体质量为8kg的时候,弹簧的长为多少cm?
【达标拓展】
1、某种活期储蓄的月利率是0.06%,存入100元本金,则本息和y(元)随所存月数x变化的函数解析式为______________,当存期为4个月的时候,本息和为________元;
2、正方向边长为3,若边长增加x则面积增加y,则y随x变化的函数解析式为____________,若面积增加了16 ,则变成增加了___________;
3、甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为________________,自变量x的取值范围是______________;
4、某学校组织学生到炬力千米的博物馆无参观,小红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去博物馆,车租车的收费标准如下:
里程收费
3千米及3千米以下7.00
3千米以上,每增加1千米2.00
(1)请写出出租车行驶的里程数x(千米)与费用y(元)之间的函数关系式;
(2)小红同学身上仅有14元钱,乘出租车到博物馆的车费够不够,请说明理由。
5、声音在空气中传播速度和气温间有如下关系:
气温(℃)05101520
声速(m/s)331334337340343
(1)若用t表示气温,V表示声速,请写出V随t变化的函数解析式;
(2)当声速为361m/s的时候,气温是多少?
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.2.1 正比例函数
【学习目标】
1、理解正比例函数的概念
2、会画正比例函数的图像,理解正比例函数的性质。
【学习重难点】
1、理解正比例函数意义及解析式的特点
2、掌握正比例函数图象的性质特点。
【前置自学】
按下列要求写出解析式
(1)一本笔记本的单价为2元,现购买x本与付费y元的关系式为_________________;
(2)若正方形的周长为P,边长为a,那么边长a与周长p之间的关系式为______________;
(3)一辆汽车的速度为60 km / h ,则行使路程s与行使时间t之间的关系式为_________;
(4)圆的半径为r,则圆的周长c与半径r之间的关系式为______________。
一般地,形如 (k是常数,k≠0)的函数,叫做 ,其中k叫做比例系数。
※练习:1、下列函数钟,那些是正比例函数?______________
(1) (2) (3) (4) (5)
(6) (7) (8)
2、关于x的函数 是正比例函数,则m__________
【展示交流】
画出下列正比例函数
比较上面两个图像,填写你发现的规律:
(1)两个图像都是经过原点的 __________,
(2)函数 的图像经过第_____象限,从左到右_______,即y随x的增大而_______;
(3)函数 的图像经过第_____象限,从左到右______,即y随x的增大而_______;
【合作探究】
总结:正比例函数的解析式为__________________
相同点
图像所在象限
图像大致形状
增减性
【达标拓展】
1、关于函数 ,下列结论中,正确的是( )
A、函数图像经过点(1,3) B、函数图像经过二、四象限
C、y随x的增大而增大 D、不论x为何值,总有y>0
2、已知正比例函数 的图像过第二、四象限,则( )
A、y随x的增大而增大 B、y随x的增大而减小
C、当 时,y随x的增大而增大;当 时,y随x的增大而减少;
D、不论x如何变化,y不变。
3、当 时,函数 的图像在第( )象限。
A、一、三 B、二、四 C、二 D、三
4、函数 的图像经过点P(-1,3)则k的值为( )
A、3 B、—3 C、 D、
5、若A(1,m)在函数 的图像上,则m=________,则点A关于y轴对称点坐标是___________;
6、若B(m,6)在函数 的图像上,则m=________,则点A关于x轴对称点坐标是___________;
7、y与x成正比例,当x=3时, ,则y关于x的函数关系式是____________
8、函数 的图像在第_______象限,经过点(0,____)与点(1,____),y随x的增大而_________
9、一个函数的图像是经过原点的直线,并且这条直线经过点(1,-3),求这个函数解析式。
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.2.2 一次函数(一)
【学习目标】
1.理解一次函数的特点及意义
2.知道一次函数与正比例的函数关系
【学习重难点】
1.一次函数与正比例函数的关系
2.一次函数的结构特点。
【前置自学】
根据题意写出下列函数的解析式
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;_______________
(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减常数105,所得的差是G的值;_______________
(3)某城市的市内电话的月收费为y(单位:元)包括:月租22元,拨打电话x分的计时费(按0.1元/分收取);_______________
(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化。_______________
一般地,形如 (k,b是常数, )的函数,叫做一次函数,特别地,当 时, 即 ,即正比例函数是一种特殊的一次函数。
【展示交流】
1、下列函数中,是一次函数的有_____________,是正比例函数的有______________
(1) (2) (3) (4)
(5) (6) (7)
2、若函数 是正比例函数,则b = _________
3、在一次函数 中,k =_______,b =________
4、若函数 是一次函数,则m__________
5、在一次函数 中,当 时, ______;当 _____时, 。
6、下列说法正确的是( )
A、 是一次函数 B、一次函数是正比例函数
C、正比例函数是一次函数 D、不是正比例函数就一定不是一次函数
7、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是________________,它是__________函数。
8、今年植树节,同学们中的树苗高约1.80米。据介绍,这种树苗在10年内平均每年长高0.35米,则树高y与年数x之间的函数关系式是_____________,它是_______函数,同学们在3年之后毕业,则这些树高________米。
9、随着海拔高度的升高,大气压下降,空气的含氧量也随之下降,已知含氧量y与大气压强x成正比例,当x=36时,y=108,请写出y与x的函数解析式___________,这个函数图像在第________象限,同时经过点(0,_____)与点(1,_____)
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.2.2 一次函数(二)
【学习目标】
1、懂得画一次函数的图像,清楚知道一次函数之间的关系
2、理解一次函数图像的性质,了解 中的k,b对函数图像的影响
【学习重难点】
1.一次函数的图象的画法。
2.一次函数的图象特征与解析式联系。
【前置自学】
例1:在同一个直角坐标系中画出函数 , , 的图像
-2-1012
y=2x
y=2x+3
y=2x-3
【展示交流】
※ 观察这三个图像,这三个函数图像形状都是_________,并且倾斜度_______。函数 的图像经过原点,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到;同样的,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到。
※ 猜想:一次函数 的图像是一条________,当 时,它是由 向_____平移_____个单位长度得到;当 时,它是由 向_____平移_____个单位长度得到。
※ 练习:
1、在同一个直角坐标系中,把直线 向_______平移_____个单位就得到 的图像;若向_______平移_____个单位就得到 的图像。
2、(1)将直线 向下平移2个单位,可得直线________;
(2)将直线 向_____平移______个单位可得直线 。
例2 :分别画出下列函数的图像
(1) (2) (3) (4)
分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。
(1) (2) (3) (4)
x0
y0
※ 观察上面四个图像,(1) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(4) 经过_________象限;y随x的增大而_______,函数的图像从左到右________。
【合作探究】
1、由此可以得到直线 中,k ,b的取值决定直线的位置:
(1) 直线经过___________象限;
(2) 直线经过___________象限;
(3) 直线经过___________象限;
(4) 直线经过___________象限;
2、一次函数的性质:
(1)当 时,y随x的增大而_______,这时函数的图像从左到右_______;
(2)当 时,y随x的增大而_______,这时函数的图像从左到右_______;
【达标拓展】
1、一次函数 的图像不经过( )
A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限
2、已知直线 不经过第三象限,也不经过原点,则下列结论正确的是( )
A、 B、 C、 D、
3、下列函数中,y随x的增大而增大的是( )
A、 B、 C、 D、
4、对于一次函数 ,函数值y随x的增大而减小,则k的取值范围是( )
A、 B、 C、 D、
5、一次函数 的图像一定经过( )
A、(3,5) B、(-2,3) C、(2,7) D、(4、10)
6、已知正比例函数 的函数值y随x的增大而增大,则一次函数 的图像大致是( )
7、一次函数 的图像如图所示,则k_______,
b_______,y随x的增大而_________
8、一次函数 的图像经过___________象限,
y随x的增大而_________ (第6题)
9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是__________
10、直线 与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________
11、已知一次函数 的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条的函数关系式_____________
12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条的函数关系式:_______________
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.2.2 一次函数(三)
【学习目标】
学会运用待定系数法和数形结合思想求一次函数解析式
【前置自学】
例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。
分析:求一次函数 的解析式,关键是求出k,b的值,从已知条可以列出关于k,b的二元一次方程组,并求出k,b。
解: ∵一次函数 经过点(3,5)与(2,3)
解得
∴一次函数的解析式为_______________
像例1这样先设出函数解析式,再根据条确定解析式中未知的系数,从而具体
写出这个式子的方法,叫做待定系数法。
【展示交流】
1、已知一次函数 ,当x = 5时,y = 4,
(1)求这个一次函数。 (2)求当 时,函数y的值。
2、已知直线 经过点(9,0)和点(24,20),求这条直线的函数解析式。
3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现
已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2
厘米.求这个一次函数的关系式.
【合作探究】
例2:已知一次函数的图象如图所示,求出它的函数关系式
练习:已知一次函数的图象如图所示,求出它的函数关系式
例3:地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。
深度(千米)。。。246。。。
温度(℃)。。。90160300。。。
(1)根据上表,求t(℃)与h(千米)之间的函数关系式;
(2)求当岩层温度达到1700℃时,岩层所处的深度为多少千米?
练习:为了学生的身体健康,学校桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套桌、凳上相对应的四档高度,得到如下数据:
(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);
(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
例4:某自水公司为了鼓励市民节约用水,采取分段收费标准。居民每月应交水费y(元)是用水量x(吨)的函数,其图象如图所示:
(1)分别写出 和 时,y与x的函数解析式;
(2)若某用户居民该月用水3.5吨,问应交水费多少元?
若该月交水费9元,则用水多少吨?
【达标拓展】
1、A(1,4),B(2,m),C(6,-1)在同一条直线上,求m的值。
2、已知一次函数的图像经过点A(2,2)和点B(-2,-4)
(1)求AB的函数解析式;
(2)求图像与x轴、y轴的交点坐标C、D,并求出直线AB与坐标轴所围成的面积;
(3)如果点(a, )和N(-4,b)在直线AB上,求a,b的值。
3、某市推出电脑上网包月制,每月收费y(元)与上网时间x(小时)的函数关系如图
所示:
(1)当 时,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元
的上网费用?
(3)若小李5月份上网费用为75元,则他在该
月分的上网时间是多少?
4、某运输公司规定每名旅客行李托运费与所托运行李质量之间的关系式如图所示,请根据图像回答下列问题:
(1)由图像可知,行李质量只要不超过______kg,就可以免费携带。如果超过了规定的质
量,则每超过10kg,要付费_______元。
(2)若旅客携带的行李质量为x(kg),所付的行李费是y(元),请写出y(元)随x(kg)
变化的关系式。
(3)若王先生携带行李50kg,他共要付行李费多少元?
5、大拇指与小拇指尽量张开时,两指尖的距离称为指距。某研究表明,一般人的身高h时指距d的一次函数,下表中是测得的指距与身高的一组数据:
指距d(cm)20212223
身高h(cm)160169178187
(1)求出h与d之间的函数关系式
(2)某人身高为196cm,则一般情况下他的指距应为多少?
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.3.1 一次函数与一元一次方程
【学习目标】
1、进一步认识和理解一次函数,同时进一步巩固一元一次方程的解法。
2、弄通一次函数与x轴的交点与一元一次方程的解的关系。
【前置学习】
1、解方程2x+4=0
2、自变量x为何值时函数y=2x+4的值为0?
3、以上方程2x+4=0与函数y=2x+4有什么关系?
4、是不是任何一个一元一次方程都可以转化为ax+b=0(a、b是常数,a≠0)?
5、当某个一次函数y=ax+b的值为0时,求相应的自变量x的值。从图像上看,相当于确定直线y=ax+b与x轴交点的横坐标的值。
6、仔细理解例1中的解法1与解法2有什么不同。
【展示交流】
1、解方程ax+b=0(a、b为常数,a≠0)
2、自变量x为何值时,一次函数y=ax+b的值为0,这句话与解方程ax+b=0(a、b为常数)到底有什么关系?
【合作探究】
一个物体现在的速度是3m/秒,其速度每秒增加2m/秒,再过几秒它的速度为11m/秒?
1)、此问题用方程解如何去解?
2)、画出y=2x-8的函数图象
如果速度y是时间x的函数,则上述问题与y=2x+3有什么关系?如何去解上述问题?
【达标拓展】
1)、当自变量x的取值满足什么条时,函数y=3x+8的值满足于下列条:
①、y=0 ②、y=-7
2)、利用函数图象解5x-3=x+2
整体感知
如何理解一次函数与x轴交点的横坐标与解方程的关系?
【堂检测】
A、基础知识巩固
1、当自变量x的取值满足什么条时,函数y=5x+7的值满足下列条
(1)、y=0 (2)、y=20
B、能力提升
当自变量x取何值时,函数y= +1与y=5x+17的值相等?
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
14.3.2 一次函数与一元一次不等式
【学习目标】、
1、会用一次函数的图像解一元一次不等式,理解一次函数与一元一次不等式的关系,
2、经历从“数”与“形”两个角度解决问题的过程,体会数形结合的思想。
3、利用一次函数的图像确定一元一次不等式的解集
【前置学习】
1、什么是一元一次不等式?它的解集是什么?
2、看下面两个问题有什么关系
(1)、解不等式5x+6>3x+10
(2)、自变量x为何值时,函数y=2x-4的值大于0?
3、由上面两个问题的关系,能进一步得到“解不等式ax+b>0与求自变量x在什么范围内一次函数y=ax+b的值大于0”有什么关系?
4、一元一次不等式与一次函数有什么联系?
任何一元一次不等式都可以转化为____________或_____________(a、b为常数,a≠0) 的形式,所以解一元一次不等式可以看作是:当一次函数值大(小)于0时,求________相应的______________
【展示交流】
用画函数图像的方法解不等式5x+4<2x+10
解法1:原不等式化为3x-6<0,画出直线y=3x-6,可以看出,当x<2时_______________________,即y=3x-6<0,所以不等式的解集为x<2.
[解析]
解法2:将原不等式的两边分别看作两个一次函数,分别为:y=5x+4与直线y=2x+10,在同一坐标系内画出图像
如图所示,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10的下方,所以不等式的解集为x<2.
【合作探究】
用画图像法解不等式,首先要把不等式转化为函数的形式,根据图像判断不等式的解集,两种解法都把不等式转化为比较___________________的高低
如图:直线y=kx+b经过点A(-3,-2),B(2,4),根据图像解答下列问题:
(1)、求k,b的值
(2)、指明不等式 >0的解集
(3)、求不等式 >4的解
(4)、解不等式6x+8<-10
1、从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的
___________________的取值范围。
2、从函数图像的角度看,就是确定直线y=kx+b在x轴上方(或下方)部分所
3、理解y>0,y=0,y<0的几何意义:
一次函数y=kx+b,图像在x轴上方时,y____0,图像在x轴上时,y____0,图像在轴下方时,y____0.
【达标拓展】
1、已知一次函数y=kx+b的图像如图,当x<时,y的取值范围是( )
A、y>0 B、y<0 C、-2<y<0 D、y<-2
2、一次函数的图像如图,则它的解析式是_____________________.
当x=______时,y=0 当x_______时,y>0 当y_______时,x<0
3、利用函数图象解出x
(1)、5x-1=2x+5 (2)、6x-4<3x+2
4、利用函数图象解不等式
(1)、5x-1>2x+5 (2)、x-4<3x+1
5、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬
1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200 个,超过部分除
按上述规定外,每个产品再增加0.4元,求一个工人:
(1)完成100个以内所得报酬 y(元)与产品数x(个)之间的函数关系式。
(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函
数关系式。
(3)完成200个以上所得报酬y(元)与产品个数x(个)之间的函数关系式
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【教学反思】
中考数学二次函数2复习
节第三题
型复习教法讲练结合
教学目标(知识、能力、教育)1.理解二次函数与一元二次方程之间的关系;
2.会结合方程根的性质、一元二次方程根的判别式,判定抛物线与 轴的交点情况;
3.会利用韦达定理解决有关二次函数的问题。
4.会利用二次函数的图象及性质解决有关几何问题。
教学重点二次函数性质的综合运用
教学难点二次函数性质的`综合运用
教学媒体学案
教学过程
一:【前预习】
(一):【知识梳理】
1.二次函数与一元二次方程的关系:
(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0
时的情况.
(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元 二次方程ax2+bx+c=0的根.
(3)当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二 次方程y=ax2+bx+c有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程y=ax2+bx+c没有实数根
2.二次函数的应用:
(1)二次函数常用解决 最优化问题,这类问题实际上就是求函数的最大( 小)值;
(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.
3.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.
(二):【前练习】
1. 直线y=3x—3与抛物线y=x2 -x+1的交点的个数是( )
A.0 B.1 C.2 D.不能确定
2. 函数 的图象如图所示,那么关于x的方程 的根的情况是( )
A.有两个不相等的实数根; B.有两个异号实数根
C.有两个相等实数根; D.无实数根
3. 不论m为何实数,抛物线y=x2-mx+m-2( )
A.在x轴上方; B.与x轴只有一个交点
C.与x轴有两个交点; D.在x轴下方
4. 已知二次函数y =x2-x—6
(1)求二次函数图象与坐标轴的交点坐标及顶点坐标;
(2)画出函数图象;
(3)观察图象,指出方程x2-x—6=0的解;
(4)求二次函数图象与坐标轴交点所构成的三角形的面积.
二:【经典考题剖析】
1. 已知二次函数y=x2-6x+8,求:
(1)抛物线与x轴J轴相交的交点坐标;
(2)抛物线的顶点坐标;
(3)画出此 抛物线图象,利用图象回答下列问题:
①方程x2 -6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.所以与x轴交点为(2,0)和(4,0)当x1=0时,y=8.所以抛物线与y轴交点为(0,8);
(2)∵ ;∴抛物线的顶点坐标为(3,-1)
(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0.
2. 已知抛物线y=x2-2x-8,
(1)求证:该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P ,求△ABP的面积.
解:(1)证明:因为对于方程x2-2x-8=0,其判别式△=(-2)2-4×(-8)-36>0,所以方程x2-2x -8=0有两个实根,抛物线y= x2-2x-8与x轴一定有两个交点;
(2)因为方程x2-2x-8=0 有两个根为x1=2,x2=4,所以AB= x1-x2=6.又抛物线顶点P的纵坐标yP = =-9,所以SΔABP=12 AByP=27
3.如图所示,直线y=-2x+2与 轴、 轴分别交于点A、B,以
线段AB为直角边在第一象限内 作等腰直角△ABC,∠BAC=90o,
过C作CD⊥ 轴,垂足为D
(1)求点A、B的坐标和AD的长
(2)求过B 、A、D三点的抛物线的解析式
4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB
边向点B以1cm/s的速度移动,同时点Q从点B出发,沿 BC边向
点C以2cm/s的速度移动,回答下列问题:
(1)设运动后开始第t(单位:s)时,五边形APQCD的面积为S
(单位:cm2),写 出S与t的函数关系式,并指出自变量t的取值范围
(2)t为何值时S最小? 求出S的最小值
5. 如图,直线 与 轴、 轴分别交于A、B两点,点P是线段AB的中点,抛物线 经过点A、P、O(原点)。
(1)求过A、P、O的抛物线解析式;
(2)在(1)中 所得到的抛物线上,是否存在一点Q,使
∠QAO=450,如果存在,求出点Q的坐标;如果不存在,请说明理由。
四:【后小结】
布置作业地纲
教后记
九年级数学上册全册教案
题21.1二次根式(概念及基本性质)型新知3时
目标1.了解二次根式的概念及基本性质.
2.经历观察、比较、总结二次根式的基本性质的过程,发展学生概括、归纳能力.
3.通过对二次根式概念和基本性质的探究,提高数学探究能力和归纳表达能力.
4.学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的乐趣,并提高应用的意识.
重点二次根式的概念和基本性质.
教学难点二次根式基本性质的灵活应用.
教具准备
教学过程主要教学过程个人修改
【活动1】
学生根据所学知识填写本第2页“思考”栏目,教师提问:
⑴所填的结果有什么特点?
⑵平方根的性质是什么?
⑶如果把上面所填的式子叫做二次根式,那么你能用数学符号表示二次根式吗?
(学生可能碰到的困难:①是否会想到用字母表示数;②是否能概括出 ≥0这一条.)
(备用问题)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0, 有意义吗?
例1下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).
例2 当x是多少时, 在实数范围内有意义?
【巩固练习】
1.本第3页练习1、2、3
2.本第3页“思考”栏目
【拓展应用】
例3 当x是多少时, + 在实数范围内有意义?
(答案:当x≥- 且x≠-1时, + 在实数范围内有意义.)
例4 (1)已知y= + +5,求 的值.(答案: )
(2)若 + =0,求a20xx+b20xx的值.(答案:0)
【归纳小结】 本节要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
【作业设计一】
一、选择题 1.下列式子中,是二次根式的是( )
A.- B. C. D.x
2.下列式子中,不是二次根式的是( )
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是( )
A.5 B. C. D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时, +x2在实数范围内有意义?
3.若 + 有意义,则 =_______.
4.使式子 有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
5.已知a、b为实数,且 +2 =b+4,求a、b的值.
【活动2】
问题:比较 与0的大小.
结论: (a≥0)是一个非负数.即 ≥0. 具有双重非负性.
【做一做】根据算术平方根的意义填空:
( )2=_______;( )2=_______;( )2=______;( )2=_______;
( )2=______;( )2=_______;( )2=_______.
结论: ( )2=a(a≥0)
例1 计算
1.( )2 2.(3 )2 3.( )2 4.( )2
【巩固练习】
计算下列各式的值:
( )2 ( )2 ( )2 ( )2 (4 )2
【拓展应用】例2 计算
1.( )2(x≥0) 2.( )2 3.( )2
4.( )2
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
【归纳小结】 本节应掌握:
1. (a≥0)是一个非负数;
2.( )2=a(a≥0);反之:a=( )2(a≥0).
【作业设计二】
一、选择题
1.下列各式中 、 、 、 、 、 ,二次根式的个数是( ).
A.4 B.3 C.2 D.1
2.数a没有算术平方根,则a的取值范围是( ).
A.a>0 B.a≥0 C.a<0 D.a=0
二、填空题
1.(- )2=________.
2.已知 有意义,那么是一个_______数.
三、综合提高题
1.计算
(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2
(5)
2.把下列非负数写成一个数的平方的形式:
(1)5 (2)3.4 (3) (4)x(x≥0)
3.已知 + =0,求xy的值.
4.在实数范围内分解下列因式:
(1)x2-2 (2)x4-9 3x2-5
【活动3】问题:填空
=_______; =_______; =______;
=________; =________; =_______.
(老师点评):根据算术平方根的意义,我们可以得到:
=2; =0.01; = ; = ; =0; = .
因此,一般地: =a(a≥0)
例1 化简
(1) (2) (3) (4)
解:(1) = =3 (2) = =4
(3) = =5 (4) = =3
【巩固练习】
教材P5练习2.
【应用拓展】
例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题.
(1)若 =a,则a可以是什么数?
(2)若 =-a,则a可以是什么数?
(3) >a,则a可以是什么数?
分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时, = ,那么-a≥0.
(1)根据结论求条;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.
解:(1)因为 =a,所以a≥0;新 标 第 一 网
(2)因为 =-a,所以a≤0;
(3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0
例3当x>2,化简 - .
【归纳小结】本节应掌握:
=a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展.
【作业设计三】
一、选择题
1. 的值是( ).
A.0 B. C.4 D.以上都不对
2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( ).
A. = ≥- B. > >-
C. < <- -=""> =
2.已知一次函数y=3-2x
(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;
(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?
(3)x取何值时,y>0?
3.已知一次函数y=-2x+4
(1)画出函数的图象.
(2)求图象与x轴、y轴的交点A、B的坐标.
(3)求A、B两点间的距离.
(4)求△AOB的面积.
(5)利用图象求当x为何值时,y≥0.
《函数的图象》课后练习
1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
一次函数教案12
教学目的和要求:
1.能通过函数图像获取信息,增强图能力,发展形象思维。
2.能利用函数图像解决简单的实际问题,发展数学应用能力。
教学重点和难点:
重点:
1、能通过函数图象获取信息,发展形象思维能力。
2、能利用函数图象解决实际问题,发展数学应用能力。
3、初步体会议程与函数的关系,建立良好知识的联系。
难点:
1.利用函数图象解决实际问题。
2.用函数的观点研究方程。
快速反应
1.下图是某地某日24小时气温随时间变化的曲线图,根据图象填空:
(1)气温最低,最低气温是℃。
(2)气温最高,最高气温是℃。
(3)气温是0℃。
2.如图是反映某水库的蓄水量V(万米3)随着干旱持续时间t(天)变化的图象,根据图象填空。
(1)水库原有水量万米3,干旱连续10天,水库蓄水量为。
(2)蓄水量小于400万米3时,将发出严重干旱警报,则连续干旱天将发出严重干旱警报。
(3)持续干旱天水库将干涸。
自主学习
为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图6—5—1所示:
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜?
答案:(1)
(2)当y1=y2时,
当 时,
所以,当通话时间等于96 min时,两种卡的收费一致;当通话时间小于 mim时,“如意卡便宜”;当通话时间大于 min时,“便民卡”便宜。
2、某医药研究所开发了一种
小结:
1.含有两个未知数,并且所含未知数的项的次数都是非曲直的方程叫做二元一次方程.
2.含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.
3.适合一个二元一次方程的'一组未知数的值,叫做这个二元一次方程的一个解.
4.二元一次方程组中多个方程的公共解,叫做这个二元一次方程组的解.
课外作业:
《畅游数学》“§7.1谁的包裹多”部分
一次函数教案13
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.
2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.
分析x轴上点的'纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
一次函数教案14
教学目标
(一)知识认知要求
1、认识一元一次方程与一次函数问题的转化关系;
2、学会用图象法求解方程;
3、进一步理解数形结合思想;
(二)能力训练要求
1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;
2、训练大家能利用数学知识去解决实际问题的能力。
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
教学重点与难点
1、理解一元一次不方程与一次函数的转化及本质联系。
2、掌握用图象求解方程的方法。
教学过程
一、提出问题
(1)方程2x+20=0;(2)函数y=2x+20
观察思考:二者之间有什么联系?
从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值
从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解
根据上述问题,教师启发学生思考:
根据学生回答,教师总结:
由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的`形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。
二、典型例题:
例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?
一次函数教案15
教材分析
课程标准的描述
要求学生明确确定一次函数需要两个条件,确定正比例函数需要一个条件;会用待定系数法求一次函数的解析式,并使学生初步形成数形结合的思想;
教学内容分析
通过例4,介绍了用待定系数法求一次函数的解析式的基本步骤,并明确待定系数法的用途和目的,进而形成数形结合的思想;
前面学生一直学习的是已知函数的解析式,然后研究函数的图象和性质,是从数到形的过程;从这一节课开始,学生反过来学习从形到数,并且在后面的学习中也经常用到数形结合的思想,所以这节课是整个学生的一种逆向思维的转折点,起着承上启下的作用,具有重要意义。
学情分析
教学对象分析
1.本班学生对于一次函数的图像和性质掌握的比较好,能通过解析式画出函数图象,通过图象判断k和b的符号,会用待定系数法计算简单的正比例函数的解析式,但求解二元一次方程组还有一定的困难,而利用待定系数法求一次函数的解析式,由于两个式子相减,b就可以抵消,所以计算问题不会很大。另外,学生在练习的过程中,对新题型比较陌生,特别是没有直接给出点或者没有说求函数解析式,这样的题学生掌握的不够好。
2.学生已经学过解二元一次方程组,并会求正比例函数的解析式,初步认识过待定系数法,以前也接触过数形结合的思想。在此基础上,可以先让学生知道什么是待定系数法,怎样去用,具体步骤有哪些,进而体会数形结合的思想,然后举例说明从数到形和从形到数的相互渗透。
3.如何根据所给的信息找到条件,确定一次函数的解析式,是学生学习的障碍,对于这个问题,主要利用四种题型(图象、列表、交点、实际应用)和学生一起探寻条件(主要是找两个点),从而突破这个障碍。
教学目标
1、理解待定系数法,并会用待定系数法求一次函数的解析式;
2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式;
3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想;
4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力.
教学重点和难点
项 目
内 容
解 决 措 施
教学重点
利用待定系数法求一次函数的解析式
强调用待定系数法求一次函数解析式的步骤
教学难点
培养数形结合分析问题和解决问题的能力
指导学生从题目中找出两个条件
教学策略
教学策略的简要阐述
通过讲授不同题型,从浅入深掌握待定系数法求一次函数解析式的四个步骤。
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。
教学过程
课堂教学过程设计
教学环节
教师活动
学生活动
设计意图、依据
复习
出了一组关于一次函数解析式、图象及性质的填空题。
一、温故知新:
1、在函数y=2x中,函数y随自变量x的增大__________。
2、已知一次函数y=2x+4的图像经过点(m,8),则m=________。
3、一次函数y=-2x+1的图象经过第 象限,y随着x的增大而 ; y=2x -1图象经过第 象限,y随着x的增大而
。
4、若一次函数y=x+b的图象过点A(1,-1),则b=________
5、已知一次函数y=kx+5过点P(-1,2),则k=_____
大部分同学很快就完成,一小组同学轮流说答案并简单讲解。
复习一次函数的图象和性质,并初步体会从数到形的思想
创设情景,提出问题
让学生画出y=2x和y=x+3的图象,并思考“你在作这两个函数图象时,分别描了几个点?你能否通过取直线上的这两个点来求这条直线的解析式呢”
接着让学生完成:
已知:一次函数y=kx+b当x=1时y的值为2,当x=2时y的值为5,求k和b.
解:把x=1,y=2;x=2,y=5分别代入函数y=kx+b得:
解得:
学生通过画图象确定“两点确定一条直线”,即求一次函数解析式需要两个条件,求出k和b即可。
激发学生学习的兴趣,培养学生分析问题的能力。通过填空题的形式,初步体会列二元一次方程组求k和b的值。
讲授例题
以教材例4为主,讲授待定系数法的四个步骤,如何利用待定系数法求函数的解析式,如何找到两个点,并总结归纳什么是待定系数法。
例:已知一次函数的.图象经过点(3,5)与(-4,-9). 求这个一次函数的解析式.
待定系数法:______________________________________________________________
你能归纳出待定系数法求函数解析式的基本步骤吗?
(1)_______________(2)_______________(3)_______________(4)____________
学生能根据给的两个点的坐标代到一次函数的解析式,并且解出二元一次方程组,求出k和b,知道求一次函数的解析式,只需要求出k和b,也就是需要找两个条件,实质上就是找两个点。
通过例题使学生形成完整的利用待定系数法求函数解析式的步骤。
提出问题,形成思路
出示四种题型:图象、表格、两点的坐标、实际应用,分别用待定系数法求一次函数的解析式。
图象的学生基本能求出,会找两个点;对于利用表格信息确定函数解析式,学生不知道是求函数的解析式;实际应用问题,学生分析问题能力较差,但基本上能找到两个条件。
加深对待定系数法的理解,加强分析问题并解决问题的能力。
课堂小结
1、待定系数法求一次函数的解析式的步骤;
2、数形结合的思想:从数到形和从形到数的思路。
学生基本能说出这节课学习的主要内容,对于数形结合的思想,学生基本能理解。
复习巩固所学知识,体会数形结合的思想。
小试身手
设计了一组从浅入深的题目,巩固本节课的内容。
由于时间关系,只完成了3题。
深化巩固所学知识,并能有所拓展提高。
板书设计
用待定系数法求一次函数的解析式
例、解:设这个一次函数的解析式为:y=kx+b
∵y=kx+b的图象过点(3,5)与(-4,-9).
3k+b=5
-4k+b=-9
解方程组得
K=2
b=-1
这个一次函数的解析式为:y=2x-1
用待定系数法求函数解析式的步骤:
1、设
2、代
3、解
4、写
教学
特色
教学特色
及时肯定学生和营造鼓励学生的氛围,激发学生学习的兴趣,积极参与课堂,自觉学习和思考。
利用多媒体辅助教学,增强直观性,提高学习效率和质量,增大教学容量,激发学生兴趣,调动积极性。
问题式教学, 互动式教学引导学生学会探究、学会合作、学会学习、学会体验。
设置了学案,让学生对教学内容更容易掌握。
教学
反思
在导入新课时,通过一组练习,让学生清楚一次函数解析式或图象关键是k和b的确定。通过几种题型的练习,让学生思考和回答问题,令学生的数学语言概括能力,互助学习、合作学习的能力得到提高,因为之前学习了函数的图象和性质,学生的数形结合思想渗透也较好。反而,在教学过程中,特别是学生解二元一次方程组,本来说很简单的,但很多学生计算都出现了问题,所以在后面的教学中,要加强学生的计算能力。教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。在课堂总结环节应逐步培养学生学会总结的意识和习惯。
但有些细节还没把握好,譬如小组交流探讨时间较短等等,希望以后的课堂能更好的培养学生的合作交流能力。
【一次函数教案】相关文章:
教案06-23
关于教案模板 教案模板案例02-03
卫星比武优秀教案 优秀教案04-13
《春》教案08-12
《吆喝》教案08-28
《泉城》教案08-28
《水果》教案09-30
《做客》教案09-10
散步的教案09-03
《人琴俱亡》教案09-09