- 相关推荐
多边形的内角和教案
作为一名优秀的教育工作者,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的多边形的内角和教案,欢迎阅读与收藏。
多边形的内角和教案1
教学目标
知识与技能
掌握多边形内角和公式及外角和定理,并能应用.
过程与方法
1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;
2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.
情感态度价值观
通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.
重点
多种方法探索多边形内角和公式
难点
多边形内角和公式的推导
教学流程安排
活动流程
活动内容和目的
活动1学生自主探索四边形内角和
活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法
活动3探索n边形内角和公式
活动4师生共同研究递推法确定n边形内角和公式
活动5多边形内角和公式的应用
活动6小结
作业
从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的.活动中.
加深对转化思想方法的理解, 训练发散思维、培养创新能力.
通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.
学生提高动手实操能力、突破“添”的思维局限
综合运用新旧知识解决问题.
回顾本节内容,培养学生的归纳概括能力.
反思总结,巩固提高.
课前准备
教具
学具
补充材料
教师用三角尺
剪刀
复印材料
三角形纸片
教学过程设计
问题与情景
师生行为
设计意图
[活动1、2]
问题1.三角形的内角和是多少?
与形状有关吗?
问题2.正方形、长方形的内角和是多少?
由此你能猜想任意凸四边形内角和吗?
动脑筋、想办法,说明你的猜想是正确的.
问题3添加辅助线的目的是什么,方法有没有什么规律呢?
学生回答:
三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.
学生先独立探究,再小组交流讨论.
教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.
学生汇报结果.
①过一个顶点画对角线1条,得到2个三角
形,内角和为2×180°;
②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;
③若在四边形内部任取一点,如图,也可以得到相应的结论;
④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)
内角和为3×180°-180°;
⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;
教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.
教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.
通过回忆三角形的内角和,有助于后续问题的解决.
从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.
通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.
通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.
[活动3]
问题4怎样求n边形的内角和?(n是大于等于3的整数)
学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.
特点:内角和都是180°的整数倍.
通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.
[活动4]
每名同学发一张三角形纸片
问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发
《多边形的内角和》公开课生了怎样的变化
问题6由四边形得到五边形呢?
依此类推能否猜想n边形内角和公式
将三角形去掉一个角可以得到四边形,如图7,四边形内角和为
180°+2×180°-180°=2×180°.
每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°
(严谨的证明应在学习数学归纳法后)
学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决
[活动5]
知道了凸多边形的内角和,它可以解决哪些问题呢?
问题6:六边形的外角和等于多少?
n边形外角和是多少?
学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到
6×180°-(6-2)×180°=360°
学生思考,回答.
n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.
利用内角和求外角和,巩固了内角和公式.
如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维
练习
一个多边形各内角都相等,都等于150°,它的边数是 ,内角和是 .
练习.解:(n-2)180=150n,n=12;
或360÷(180-150)=12(利用外角和)
150°×12=1800°.
巩固内角和公式,外角和定理.
[活动5]
小结
下面请同学们总结一下这节课你有哪些收获.
学生自己小结,老师再总结.
1. 多边形内角和公式(n-2)180°,外角和是360°;
2. 由特殊到一般的数学方法、转化思想.
学会总结,培养归纳概括能力.
作业:
课后思考题.
一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?
当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?
多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.
作业:
解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x
x=(n-2)180-1125
∵0 ∴0<(n-2)180-1125<180 解得: ∵n是整数, ∴n=9. x=(9-2)180-1125=135 注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗? 解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x ∵n是整数, ∴45+x是180的倍数. 又∵0 ∴45+x=180,x=135,n=9 还可以根据内角和的特点,先求出内角和. 解法3.设此多边形的内角和为x°,依题意:1125 即:180×6+45 ∵x是多边形内角和的度数 ∴x是180的倍数 ∴x=180×7=1260 边数=7+2=9, 这个内角=1260°-1125°=135° 解法4(极值法).设这是n边形,这个内角为x°,则0 令x=0,得:n=,令x=180,得:n= ∴ [教学目标] 1.使学生了解多边形的内角、外角等概念. 2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点: (1)多边形的内角和公式. (2)多 边形的外角和公式. 2.难点:多边形的内角和定理的推导. [教学过程] 一、探究 1.我们知道三角形的内角和为180°. 2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°. 3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢? 画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果. 从中你得到什么结论? 同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导. 二、思考几个问题 1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? 2.从五边形一个顶点出发可以引几条对角线?它们将 五边形分成几个三角形?那么这五边形的内角和为多少度? 3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度? 综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则 n边形的内角和等于(n一2)180°. 想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗? 由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例) 分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°. 如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°. 分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去. ∴五边形的内角和为(5—1)×180°一180°=(5—2)×180° 用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°. 三、例题 例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系. 分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案. 解:如图,四边形ABCD中,∠A+∠C=180°。 ∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180° 这就是说:如果四边形一组对角互补,那么另一组对角也互补. 例2 如图,在六边 形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少? 已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×1 80°.由于六边形的'内角和为(6—2)×180°=720°. 这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360° . 解:∵六边形的任何一个外角加上它相邻的内角和为180°. ∴六边形的六个外角加上各自相邻内角的总和为6×180°. 由于六边形的内角和为(6—2)×180°=720° ∴它的外角和为 6×180°一720°=360° 如果把六边形横成n边形.(n为不小于3的正整数) 同样也可以得到 其外角和等于360°.即 多边形的外角和等于360°. 所以我们说多边形的外角和与它的边数无关. 对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°. 如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°. 四、课堂练习 课本P89练习1、2、3题. P90第2、3题 五、课堂小结 引导学生总结本节课主要内容. 六、课后作业 课本P90第4、5、6题. 备选题: 一、判断题. 1.当多边形边数增加时,它的内角和也随着增加.( ) 2.当多边形边数增加时.它的外角和也随着增加.( ) 3.三角形的外角和与一多边形的外角和相等.( ) 4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.( ) 5.四边形的四个内角至少有一个角不小于直角.( ) 二、填空题. 1.一个多边形的每一个外角都等于30°,则这个多边形为 边形. 2.一个多边形的每个内角都等于135°,则这个多边形为 边形. 3.内角和等于外角和的多边形是 边形. 4.内角和为1440°的多边形是 . 5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是 边形. 6.若多边形内角和等于外角和的3倍,则这个多边形是 边形. 7.五边形的对 角线有 条,它们内角和为 . 8.一个多边形的内角和为4320°,则它的边数为 . 9.多边形每个内角都相等,内角和为720°,则它的每一个外角为 . 10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= . 11.四边形的四个内角中,直角最多有 个,钝角最多有 个, 锐角最多有 个. 12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 . 三、选择题. 1.多边形的每个外角与它相邻内角的关系是( ) A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角 2.若n边形每个内角都等于150°,那么这个n边形是( ) A.九边形 B.十边形 C.十一边形 D.十二边形 3.一个多边形的内角和为720°,那么这个多边形的对角线条数为( ) A.6条 B.7条 C.8条 D.9条 4.随着多边形的边数n的增加,它的外角和( ) A.增 加 B.减小 C.不变 D.不定 5.若多边形的外角和等于内角和的号,它的边数是( ) A.3 B.4 C.5 D.7 6.一个多边形的内角和是1800°,那么这个多边形是( ) A.五边形 B.八边形 C.十边形 D.十二边形 7.一个多边形每个内角为108°,则这个多边形( ) A.四边形 B,五边形 C.六边形 D.七边形 8,一个多边形每个外角都是60°,这个多边形的外角和为( ) A.180° B.360° C.720° D.1080° 9.n边形的n个内角中锐角最多有( )个. A.1个 B.2个 C.3个 D.4个 10.多边形的内角和为它的外角和的4倍,这个多边形是( ) A.八边形 B.九边形 C.十边形 D,十一边形 四、解答题. 1.一个多边形少一个内角的度数和为2300°. (1)求它的边数; (2)求少的那个内角的度数. 2.一个八边形每一个顶点可以引几条对角线?它共 有多少条对角线?n边形呢? 3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数. 4. 若一个多边形每个外角都等于它相邻的内角的 ,求这个多 边形的边数. 5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数. 6.n边形的内角和与外角和互比为13:2,求n. 7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗? 8.将五边形砍去一个角,得到的是怎样的图形? 9.四边形ABCD中,∠A+∠B=210°,∠C =4∠D.求:∠C或∠D的度数. 10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC. 求证:∠DBC=2∠BDC. 一、创设情景,明确目标 多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。 二、自主学习,指向目标 学习至此:请完成《学生用书》相应部分。 三、合作探究,达成目标 多边形的定义及有关概念 活动一:阅读教材P19。 展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角? 小组讨论:结合具体图形说出多边形的边、内角、外角? 反思小结:多边形的定义及相关概念。 针对训练:见《学生用书》相应部分 多边形的对角线 活动二:(1)十边形的对角线有35条。 (2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。 展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2? 反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。 小组讨论:如何灵活运用多边形对角线条数的规律解题? 针对训练:见《学生用书》相应部分 正多边形的.有关概念 活动二:阅读教材P20。 展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么? 小组讨论:判断一个多边形是否是正多边形的条件? 反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。 针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 本节学习的数学知识是: 1、多边形、多边形的外角,多边形的对角线。 2、凸凹多边形的概念。 五、达标检测,反思目标 1、下列叙述正确的是(D) A、每条边都相等的多边形是正多边形 B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形 C、每个角都相等的多边形叫正多边形 D、每条边、每个角都相等的多边形叫正多边形 2、小学学过的下列图形中不可能是正多边形的是(D) A、三角形B。正方形C。四边形D。梯形 3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。 4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。 一、教学目标 1、知识目标 (1)使学生了解多边形的有关概念。 (2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。 2、能力目标 (1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。 (2)通过变式练习,培养学生动手、动脑的实践能力。 3、情感与态度目标 通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,培养学生对学习数学勇于创新的精神。 二、教材分析 《多边形的内角和》是七年级下册第7.3章第二节内容,本节内容安排一个课时。为了更好地突出重点、突破难点,圆满地完成教学任务,取得较好的教学效果。根据教材和学生的特点,本节课我采用了“观察、点拨、发现、猜想”等探究式教学方式,在创设问题,新课引入等教学环节中,我提出问题,质疑,引导学生观察,分析、思考等。启发、点拨下发现问题的方法。这种教学方法目的在让学生通过观察、猜想、主动探讨获得新知识,同时培养学生分析、归纳、概括能力,培养学生的创新意识和创造精神。 三、学校与学生情况分析 海南省乐东县千家中学是一所少数民族的初级中学,全部都来自于贫困的农村,学校的教学条件比较落后。因此,大部分学生的基础知识以及学习风气都比较差一些。不过这个学期在新教材,新的教学理念指导下,在新的课堂教学方法中,逐步淡化了过分训练,而是重视学生学习兴趣和态度的培养,重视学生的自主探索和合作交流以及创新意识的培养。另外在少数民族地区七年级的学生年龄较大一些。他们在班里开始逐步形成了自己动手实践,自主探索和合作交流的良好习惯,师生互动的气氛也逐步形成。 四、教学设计 (一)创设问题情境,引出新课。 1、以疑导入,引发求知欲。先展示水立方、蜂窝、六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。 引题:我们学校要准备建造一个各边长为5米,各内角都相等的六边形花坛。问各角是多少度? 2、复习提问,知识巩固。 ⑴三角形内角和等于多少度?(180°) 问题1、教室中有四边形的物体吗?是怎样的四边形?内角和分别是多少度?问题2:你知道长方形和正方形的内角和是多少? 其它四边形的内角和是多少? 问题3、猜一猜:任意一个四边形的内角和可能是多少度? 生:因为任意三角形的内角和为180,而长方形和正方形的`内角和为360,因此可猜想:任意一个四边形的内角和为360。 ⑵四边形内角和定理以及推导方法。 3、引入新课 上一节课学习了求四边形内角和的方法,怎样求五边形、六边形n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。 (二)引导探索,研讨新知 1、以动激趣,浅探求知。 一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。 二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。(误差) 三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。 2、观察联想,启迪思维。 (1)观察引探:观察比较以上结论后,启发提问:“边数少的多边形可以通过量角来求和,如果边数很多那又怎么办?由上述结论可知,多边形的内角和是三角形内角和的若干倍,那么这个倍数与多边形的边数有何关系?能否找出其规律?”(让学生猜想,大胆尝试) (2)启发联想:我们已经学过求四边形内角和的推导方法,它是以三角形为基础求得的,即连结一条对角线,将四边形分割为两个三角形,其和为180°×2,那么五边形、六边形、 n边形能否依此类推呢? 3、讨论、交流、创新 一、 教学目标 知识与技能目标:能够说出多边形的内角和公式并会运用 过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。 情感态度与价值观目标:养成实事求是的科学态度。 二、 教学重难点 教学重点:多边形的内角和公式 教学难点:多边形内角和公式 三、 教学方法 讲解法、练习法、分小组讨论法 四、 教学过程 结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、 生成新知、深化新知、巩固新知、小结作业。 1. 导入新知 首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的 内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。 通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的'学习奠定了基础。 2. 生成新知 接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此 得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。 验证:七边形验证 在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。 3. 深化新知 再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求 内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。 本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。 4. 巩固提高 我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节, 我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。 我会在PPT上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。 5. 小结作业 先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。 设计理念: 一、教材分析: 从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌,正多边形和圆等都是非常重要的。知识的联系性比较强。因此,本节课具在承上启下的作用,符合学生的认知规律。再从本节的教学理念看,编者从简单的几何图形入手,蕴含了把复杂问题转化为简单问题,化未知为已知的思想。充分体现了人人学有价值的数学,这一新课程标准精神。 二、学情分析: 三、教学目标的确定: 3、通过探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何。 四、重难点的确立: 既然是多边形内角和具有承上启下的作用。因此确定本节课的重点是探究多边形的内角和的`公式。由于七年级学生初学几何,所以学生在几何的逻辑推理上感到有难度。所以我确定本节课的难点是探究多边形内角和公式推导的基本思想,而解决问题的关键是教师恰当的引导。 四年级数学教案三角形的内角和 根据上面三组实验分别证明了锐角三角形、直角三角形、钝角三角形的内角和都等于180度。 四、练一练。 请学生自己画任意的三角形,并用刚才老师所讲的方法自己来判断一下三角形的内角和。 五、实践活动: 第1题:用纸剪出一个等边三角形。 第2题:将等边三角形两边取中点,并向底作垂线,第3题:把纸沿着虚线对折。 第4题:观察三个角的内角加起来为多少? 一、教学目标 1、掌握多边形的内角和公式,并能熟练运用。 2、通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。 3、通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。 4、通过猜想,推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的学习热情。 二、教学重点、难点 重点:探索多边形的内角和公式。 难点:探索多边形内角和时,如何把多边形转化成三角形,利用三角形内角和180度求出多边形内角和。 三、教学方法: 学生自主探究、合作交流与教师启发引导相结合. 四、教具准备 ①每个小组一张“探究实验报告单”(活动1) ②每人一张“类比探索五边形、六边形、七边形的内角和的答题纸”(活动2) ③多媒体课件 五、教学过程 (一)创设情境,引入新课 问题 1:把一个长方形纸片剪去一个角还剩几个角。 【学生给出的答案可能是 ---三个角、四个角、五个角,教师演示动画。 】 问题 2:你知道所得图形的内角和吗。 你知道102边形的内角和吗。 【根据学生的回答,教师指出本课内容,板书课题: 多边形的内角和。】 (二)合作交流,探索新知 活动 1:猜想验证四边形的内角和 问题: (1)任意四边形的内角和等于多少度。 (2)你是怎样得到的。你能找到几种方法。 【问题 (1)学生很容易猜到360°,问题 (2)组织学生四人一组拿出课前老师发给每个小组的探究实验报告,讨论并记录探究方法。 在讨论的过程中,教师给出合格、良好、优秀的“自我评价标准”,每个小组对照评价表给出自我评价,教师深入到学生讨论中,以“边听—边问—边导”的形式,适时对各小组进行点拨。 讨论结束后,小组学生代表用实物投影展示探究实验报告,说明求四边形内角和的方法,并讲述想法。教师对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼、分割。 教师将常用的3种分割方法板书到黑板上。重点引导学生比较三种不同的分割方法----即从四边形的一个顶点引对角线;从四边形的边上任意取一点,连接这点与各顶点的线段;从四边形的内部任取一点,连接这点与各顶点的线段,分别将四边形分成了几个三角形,如何利用三角形的内角和180°求出四边形的内角和360°,如何将四边形内角和的表示与边数n联系起来。】 【板书】 方法一:180°×2=180°×(4-2),方法二:180°×3-180°=180°×2=180°×(4-2),方法三:180°×4-360°=180°×2=180°×(4-2),活动 2:类比探索五边形、六边形、七边形的内角和 问题:五边形、六边形、七边形的内角和等于多少度。 【学生任选一种方法在课前老师发给每个学生的答题纸上自主完成。预计有些学生对分割方法可能存在困难,教师用幻灯片提示三种不同的分割方法,这期间可以让做得快的学生下座位与老师一道帮助学习有困难的学生。做完后,请学生用三种方法叙述计算过程和结论,教师板书过程并点评。】 【板书】 五边形 3×180° 4×180°-180° 5×180°-360° = 180°×(5-2) = 180°×(5-2) = 180°×(5-2) 六边形 4×180° 5×180°-180° 6×180°-360° = 180°×(6-2) = 180°×(6-2) = 180°×(6-2) 七边形 5×180° 6×180°-180° 7×180°-360° = 180°×(7-2) = 180°×(7-2) = 180°×(7-2) 活动 3:归纳总结n边形的`内角和 1.猜想:n边形的内角和如何表示呢。 【学生很容易说出 (n-2)·180°】 2.说明:我们能否用上述方法得到n边形的内角和公式。 【幻灯片】 (n-2)·180° (n-1)·180°—180° n·180°-360° =(n-2)·180° =(n-2)·180° 【引导学生根据三种分割方法将n边形内角和的表示与边数n联系起来,得出n边形内角和公式。】 3.归纳 : n边形的内角和公式 (n-2)·180°。 (三)反馈练习,应用新知 1.填一填: ①八边形的内角和等于 度,十边形的内角和等于 度。 ②一个多边形的内角和是1260°,它是 边形。 ③一个多边形的各内角都等于120°,它是 边形。 ④如图,X= . 【学生口答并说明理由。】 2.做一做:求下列图形中x的值: 【学生自主完成,请2名学生板演,做完再请学生当小老师点评。】 3.议一议: 如图,直线OB⊥AB,垂足为B,直线OC⊥AC,垂足为C,①∠A与∠1 有什么关系。 ②∠A与∠2 有什么关系。 【同桌交流,师生评述。 】 (四)归纳总结,反思升华 通过今天这节课的学习,你有什么收获与体会。 (如:你学到了什么。懂得了什么。 发现了什么。 困惑的是什么。 应该注意什么。还想知道什么。 …) 【全班交流,教师点评。 】 (五)布置作业,巩固提高 必做题: 课本 P 90: 2、 7、8 选做题: 1、预习内容:P88- P89 2、编题与解题:围绕 n边形的内角和公式 (n-2)·180°,自编自解3道习题。 思考题: 小明在计算某个多边形的内角和时,由于粗心他漏掉一个内角,求得的内角和是1680°,你能否求得正确结果呢。 六、板书设计: 附:探究实验报告 附:答题纸 。 一、教学目标 【知识与技能】 掌握多边形的内角和公式,能应用公式解决简单问题。 【过程与方法】 通过由四、五、六边形归纳多边形内角和的过程,提高总结归纳能力。 【情感、态度与价值观】 在探究过程中体验成功的喜悦,激发学习数学的兴趣。 二、教学重难点 【重点】多边形的内角和公式。 【难点】多边形的'内角和公式的探究过程。 三、教学过程 (一)导入新课 回顾三角形内角和为180°,正方形、长方形内角和为360°。 提问:一般的四边形内角和是否也是360°?五边形、六边形等多边形的内角和又是多少? 引出课题《多边形的内角和》。 (二)讲解新知 自主探究:在纸上画任意四边形,利用三角形内角和推导四边形的内角和。 预设学生想到只需连接一条对角线,即可将一个四边形分割为两个三角形,故内角和为360°。 教学目标 知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题; 过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力. 情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造. 教学重点:多边形外角和定理的探索和应用. 教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透. 教学准备:多媒体课件 教学过程 第一环节 创设情境,引入新课(5分钟,学生理解情境,思考问题) 问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。 (1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角? (2)他每跑完一圈,身体转过的角度之和是多少? (3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的? 第二环节 问题解决(10分钟,小组讨论,合作探究) 对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。 小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5. 这样,∠1+∠2+∠3+∠4+∠5=360° 问题引申: 1.如果广场的形状是六边形那么还有类似的结论吗? 2.如果广场的形状是八边形呢? 第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记) 1.多边形内角的一边与另一边的.反向延长线所组成的角叫做这个多边形的外角。 2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。 探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少? 鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。 方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究; 方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。 结论:多边形的外角和等于360° (1)还有什么方法可以推导出多边形外角和公式? (2)利用多边形外角和的结论,能否推导出多边形内角和的结论? 第四环节 巩固练习(10分钟,学生利用知识独立解决问题) 例1一个多边形的内角和等于它的外角和的3倍,它是几边形? 随堂练习 1.一个多边形的外角都等于60°,这个多边形是几边形? 2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么? 挑战自我: 1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角? 2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角? 挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。 第五环节 课时小结(3分钟,学生加深记忆) 多边形的外角及外角和的定义; 多边形的外角和等于360°; 在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想. 第六环节 布置作业: 习题4.11 A组(优等生)第1,2,3题 B组(中等生)1、2 C组(后三分之一生)1 一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想. 3.会根据比较简单的条件画出指定的四边形. 4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想. (三)德育渗透点 使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣. (四)美育渗透点 通过四边形内角和定理数学,渗透统一美,应用美. 二、学法引导 类比、观察、引导、讲解 三、重点·难点·疑点及解决办法 1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题. 2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用. 3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角. 四、课时安排 2课时 五、教具学具准备 投影仪、胶片、四边形模型、常用画图工具 六、师生互动活动设计 教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料. 第2课时 七、教学步骤 【复习提问】 1.什么叫四边形?四边形的内角和定理是什么? 2.如图4-9, 求 的度数(打出投影). 【引入新课】 前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题. 【讲解新课】 1.四边形的外角 与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10. 2.外角和定理 例1 已知:如图4-11,四边形ABCD的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 . 求 . (1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和). (2)教给学生一组外角的画法——同向法. 即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和. (3)利用每一个外角与其邻补角的关系及四边形内角和为360°. 证得: 360° 外角和定理:四边形的外角和等于360° 3.四边形的.不稳定性 ①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗? (学生回答) ②若以 为边作四边形ABCD. 提示画法:①画任意小于平角的 . ②在 的两边上截取 . ③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点. ④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13. 大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定. ③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性. 教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确: ①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据. (4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育. 【总结、扩展】 1.小结: (1)四边形外角概念、外角和定理. (2)四边形不稳定性的应用和克服不稳定性的理论根据. 2.扩展:如图4-15,在四边形ABCD中, ,求四边形ABCD的面积 八、布置作业 教材P128中4. 九、板书设计 十、随堂练习 教材P124中1、2 补充:(1)在四边形ABCD中, , 是四边形的外角,且 ,则 度. (2)在四边形ABCD中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度 (3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角. 1 目标 知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想 过程与方法:经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法. 情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造. 重点:多边形内角和定理的探索和应用 教学难点:边形定义的理解;多边形内 角和公式的推导;转化的数学思维方法的渗透. 教学过程 第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入) 1.多媒 体展示蜂窝,教师结合图片让学生发现生活中无处不在的多 边形. 2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角? 第二环节 概念形成(5分钟,学生理解定义) 1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素. 2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形. 第三环节 实验探究(12分钟,学生动手操作,探究内角和) (以四人小组为单位展开探究活动) 提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 1 . c o m 活动一:利用四边形探索四边形内角和 要求:先独立思考再小组合作交流完成.) (师巡视,了解学生探索进程并适当点拨.) (生思考后交流,把不同 的方案在纸上完成.) ……(组 间交流,教师展示几种方法) 教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处? 进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。 活动二:探索五边形内角和 (要求:独立思考,自主完成.) 第四环节 思维升华(5分钟,教师引导学生进行推算) 教学过程: 探索n边形内角和,并试着说明理由 (结合出示的图表从代数角度猜测公式,并从几何意义加以解读) n边形的内角和=(n—2)180° 正n边形的一个内角= = 第五环节 能力 拓展(12分钟,学生抢答) 抢答题: 1.正八边形的内角和为_______ . 2.已知多边形的内角和为900°,则这个多边形的边数为_______. 3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______. 应用发散: 4.如图所示的'模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么? 5.小明有一个设想:2008年奥运会在北京召开,要是能设计一个内角和是2008°的多边形花坛该多有意义啊!小明的这个想法能实现吗? 第六环节 时小结:(3分钟,学生填表) 教师和学生一起对本节内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于下反馈给老师 第七环节 布置作业: 习题4、10 A组(优等生)1;思考题:一个多边形去掉一个内角后形成的多边形内角和为 1800°,你能求出原多边形的边数吗? B 组(中等生)1 C组(后三分之一生)1 教学反思: 【教学内容】 【教学目标】 1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题. 2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题. 3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想. 【教学重点与教学难点】 1.重点:多边形的内角和公式 2.难点:多边形内角和的推导 3.关键:.多边形"分割"为三角形. 【教具准备】三角板、卡纸 【教学过程】 一、创设情景,揭示问题 1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗? 2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形? 你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力 二、探索研究学会新知 1、回顾旧知,引出问题: (1)三角形的内角和等于_________.外角和等于____________ (2)长方形的内角和等于_____,正方形的内角和等于__________. 2、探索四边形的`内角和: (1)学生思考,同学讨论交流. (2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。 (3)引导学生用"分割法"探索四边形的内角和: 方法一:连接一条对角线,分成2个三角形: 180°+180°=360° 从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形. 180°×4-360°=360° 3、探索多边形内角和的问题,提出阶梯式的问题: 你能尝试用上面的方法一求出五边形的内角和吗?(第一二组) 你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表: n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知: (1)一个八边形的内角和是_____________度 (2)一个多边形的内角和是720度,这个多边形是_____边形 (3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________ 通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和 三、点例透析 运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢? 四、应用训练强化理解 4、第83页练习1和2多边形内角和定理的应用 五、知识回放 课堂小结提问方式:本节课我们学习了什么? 1多边形内角和公式 2多边形内角和计算是通过转化为三角形 六、作业练习 1、书面作业: 2、课外练习: 教学目的 使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。 重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。 难点:比较复杂图形,灵活应用三角形外角的性质。 教学过程 一、复习提问 1.三角形的.内角和与外角和各是多少? 2.三角形的外角有哪些性质? 二、新授 例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数。 分析:由已知条件可得∠B=2∠A,∠C=3∠A所以可以根据三角形的内角和等于180°来解决。 做一做:如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46° A BDEA (1)你会求∠DAE的度数吗?与你的同伴交流。 (2)你能发现∠DAE与∠B、∠C之间的关系吗? (2)若只知道∠B-∠C=20°,你能求出∠DAE的度数吗? 分析:(1)∠DAE是哪个三角形的内角或外角? (2)在△ADE中,已知什么?要求∠DAE,必需先求什么? (3)∠AED是哪个三角形的外角? (4)在△AEC中已知什么?要求∠AEB,只需求什么? (5)怎样求∠EAC的度数? 三、巩固练习 1.如图,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分线,求∠ADC,∠ADB的度数。 2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各内角的度数。 四、小结 三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。 一、教学目标: 1.让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯. 2.能灵活的运用多边形内角和与外角和公式解决有关问题. 二、教材分析 本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法. 三、教学重点、难点 1.多边形的外角和公式及公式的探索过程. 2.能灵活运用多边形的内角和与外角和公式解决有关问题. 四、教学建议 关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°. 五、教具、学具准备 投影仪、题板、画图工具 六、教学过程 1.复习提问: (1)多边形的内角和是多少? (2)正八边形的每一个内角为度? 2.创设问题情景,引入新课: 教师投放课本51页图9-35时,并出示以下问题: 小明沿一个五边形广场周围的小路,按顺时针方向跑步 (1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们. (2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系? (3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢? 点拨: 请填写下题: 如图,OA‘∥AE,OB‘∥AB,OC‘∥BC,OD‘∥CD,OE‘∥DE,则∠α=,∠β=,∠γ=,∠δ=∠θ=. 因为∠α+∠β+∠γ+∠δ+∠θ=. 所以∠1+∠2+∠3+∠4+∠5=. 由此可得:五边形的外角和是360° (4)你能借助内角和来推导五边形的外角和吗? 点拨: 因五边形的每一个内角与它相邻的.外角是邻补角, 所以五边形的内角和加外角和等于5×180° 所以外角和等于5×180°-(5-2)×180°=360° (5)你用第二种方法推导下列多边形的外角和 三角形的外角和四边形的外角和五边形的外角和n边形的外角和是. 得出结论:多边形的外角和都等于360°. 4.应用举例: 例一个多边形的内角和等于它的外角和的3倍,它是几边形? 点拨: 设出未知数,根据相等关系:内角和=3×外角和列出方程 5.练习: 见学案练习一和练习二 6.达标检测 见学案达标检测 7.小结 本节课你学到了什么?有什么收获? 8.作业 学生口答,并计算出度数 学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题. 学生质疑思考,一时找不到方法,可按点拨的引导继续思考. 生充分思考,认真分析,小组讨论交流得出答案. 学生找关系,小组积极讨论、交流,小组汇报结果. 学生独立探究,很快得出答案. 学生独立解决 [教学目标] 知识与技能: 1.会用多边形公式进行计算。 2.理解多边形外角和公式。 过程与方法: 经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力. 情感态度与价值观: 让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。 [教学重点、难点与关键] 教学重点:多边形的内角和.的应用. 教学难点:探索多边形的内角和与外角和公式过程. 教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决. [教学方法] 本节课采用“探究与互动”的教学方式,并配以真的情境来引题。 [教学过程:] (一)探索多边形的内角和 活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。 活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论? 多边形边数分成三角形的个数图形 内角和计算规律 三角形31180°(3-2)·180° 四边形4 五边形5 六边形6 七边形7 。。。。。。 n边形n 活动3:把一个五边形分成几个三角形,还有其他的分法吗? 总结多边形的内角和公式 一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。 巩固练习:看谁求得又快又准!(抢答) 例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=? (点评:四边形的一组对角互补,另一组对角也互补。) (二)探索多边形的外角和 活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少? 分析:(1)任何一个外角同于他相邻的内角有什系? (2)五边形的五个外角加上与他们相邻的内角所得总和是多少? (3)上述总和与五边形的内角和、外角和有什么关系? 解:五边形的外角和=______________-五边形的内角和 活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的'结果吗? 也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。 结论:多边形的外角和=___________。 练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。 练习2:正五边形的每一个外角等于________,每一个内角等于_______。 练习3.已知一个多边形,它的内角和等于外角和,它是几边形? (三)小结:本节课你有哪些收获? (四)作业: 课本P84:习题7.3的2、6题 附知识拓展—平面镶嵌 (五)随堂练习(练一练) 1、n边形的内角和等于__________,九边形的内角和等于___________。 2、一个多边形当边数增加1时,它的内角和增加()。 3、已知多边形的每个内角都等于150°,求这个多边形的边数? 4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于() A:360°B:540°C:720°D:900° 5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数? 【多边形的内角和教案】相关文章: 精选三角形内角和教案四篇05-13 三角形内角和教案锦集八篇05-15 大班数学认识多边形教案09-12 《三角形的内角和》教学反思04-04 《多边形面积计算》教学反思11-30 《爷爷和小树》教案08-29 《我和企鹅》教案09-19 《狐狸和乌鸦》教案03-30 鲜花和星星教案03-31 《太阳和影子》教案03-24多边形的内角和教案2
多边形的内角和教案3
多边形的内角和教案4
多边形的内角和教案5
多边形的内角和教案6
多边形的内角和教案7
多边形的内角和教案8
多边形的内角和教案9
多边形的内角和教案10
多边形的内角和教案11
多边形的内角和教案12
多边形的内角和教案13
多边形的内角和教案14
多边形的内角和教案15