- 相关推荐
《长方体表面积》教学反思
作为一名优秀的人民教师,我们要在教学中快速成长,借助教学反思我们可以拓展自己的教学方式,那么教学反思应该怎么写才合适呢?以下是小编精心整理的《长方体表面积》教学反思,仅供参考,希望能够帮助到大家。
《长方体表面积》教学反思1
我们都知道刚学长方体和正方体的时候,学生最容易把表面积的计算和体积搞混。为了帮助学生理解概念,便于今后能清晰辨析解题,我在教学《长方体与正方体表面积的计算》这一课时,采取了“提纲挈领,层层深入”的方法来教学,自我感觉效果还不错。
所谓“提纲挈领,层层深入”就是精讲精炼,由表及里,从直观到抽象,从理解到运用,逐步掌握并形成技能的过程。
一、理解概念三步走
学生之所以在今后解决问题或运算过程中会让表面积和体积“打架”,其中最主要的原因还是对概念的不理解,因此理解概念是计算之源。
1、初步感知概念
提问:“看到表面积一词,同学们就字面意思,说说你对表面积是怎样理解的呢?”让学生讨论自己想法,理解表面积它首先是个面积;其次它是物体表面的面积;就长方体和正方体来说它就是6个面面积之和。
2、具体理解概念
摸:拿出一个长方体或正方体说说它的表面积指的是哪里?
说:在一个长方体鞋盒外面包了一层包装纸,接头忽略不计,长方体的表面积就是包装纸的大小,为什么?;
想:你能举一个这样的例子么?
3、深刻明确概念
长方体和正方体表面的面积就是长方体和正方体6个面面积之和。
二、掌握计算三要素
1、了解长方体和正方体的特征是掌握表面积计算的基础。长方体有3组对面相等,正方体6个面全相等,在学生认知的基础上归纳出长方体与正方体表面积的计算公式,学生自然记忆深刻。
2、理解表面积的概念是掌握表面积计算的精髓。前面我们为什么要花很久去理解概念?俗话说:磨刀不误砍柴工。学生理解的`表面积的内涵,除了常规长方体和正方体表面积的计算,即便以后遇上各种“变式”的(无盖的,少2个面的等情况)就没有什么难以理解的了。
3、积累生活经验是掌握表面积计算的重要途径
小学生的空间观念还不健全,很多习题还依赖直观物体或模型来构建表像。因此老师要设计各种典型的习题让学生去看实物、做模型、画草图,学生感知的经验丰富了,题意理解了,今后解决问题还能有什么困难呢。
《长方体表面积》教学反思2
在教学《长方体和正方体的表面积》时,我首先让学生仔细观察手中的长方体,然后让学生认真思考长方体各个面的面积与长方体的长、宽、高之间的关系,从而让学生知道:
前、后面=长×高×2;
左、右面=宽×高×2;
上、下面=长×宽×2。
最后总结归纳:
长方体表面积的计算公式:
方法(一):S=长×高×2+宽×高×2+长×宽×2
方法(二):S=(长×高+宽×高+长×宽)×2
正方体表面积的计算公式:
S=棱长×棱长×6
在计算长方体和正方体表面积时,要考虑到以下几种情况:
1、 完整的(六个面都有)长方体或正方体
这种类型的题目,直接套用表面积计算公式即可。
2、 无底或无盖的长方体或正方体(如粉刷教室、鱼缸、游泳池等的表面积)
这种类型的题目,首先要看清楚要计算的是哪几个面,然后再进行解答。
公式:S=长×高×2+宽×高×2+长×宽
3、 求长方体或正方体四周的表面积
它指的是长方体或正方体周围四个面(即前面、后面、左面、右面)的表面积。
公式:S=长×高×2+宽×高×2
总体说来,这部分知识只要掌握了长方体和正方体的'表面积及计算方法,对于学生们来说是很容易的。学习困难的学生在教师的指导下,也能学得很不错。表面积的计算公式,同学们也能做到运用自如。但中间还是出现了一些问题,比较严重的就是学生的计算能力不强,导致解题过程中出现了不少错误。今后,我需要在这一方面采取一些措施,如通过小组竞争等方式来提高同学们计算的准确性。
《长方体表面积》教学反思3
立体图形的研究和学习可以充分发展学生的空间思维能力和想象力,而动手操作更能帮助学生直观的理解知识。
在《长方体和正方体的表面积》这节课的教学上,我首先让学生用自制的长方体和正方体模型,通过交流讨论,明确了长方体的表面积其实就是求六个面的面积和。在第一节的知识经验上,学生已经知道长方体六个面可以分成三对,每对的两个面都相等。在此基础上,学生独立完成例题的解答,学习兴趣很高,很快就得出了长方体表面积的计算方法。最后通过交流,学生们除了得出两种计算方法外,还得出了特殊的长方体的表面积计算方法,即有一对面是正方形的`长方体的表面积计算方法。接下来,独立思考并得出正方体的表面积计算方法就水到渠成了。学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
最后,让学生同桌交流,发言总结出本节课的知识要点,经过多位同学叙述,归纳出要点和规律。
教师是学习活动的组织者、引领者和亲密的伙伴。以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的探究能力有了一定提高。
《长方体表面积》教学反思4
我在执教《长方体的表面积》,主要从以下几个方面进行的:
1、理解表面积的定义上,出示一个长方体纸盒,计算要用多少纸片,求什么,把一个生活实际问题转化为一个数学问题,也就是要去求这个长方体的表面积,让孩子们指一指表面积在哪里。这个时候不急着去计算这个长方体的表面积,而是让孩子们想一想在我们的生活场景中哪些地方需要计算表面积的,孩子们举例了给教室贴瓷砖、做纸箱、做鱼缸、给教室的们刷漆,等等,这个时候我会追问你的场景中的表面积在哪里,像鱼缸是会少一个面的。这样为学生建立了空间想象的表象认识,学生在后面完成解决问题时就会在脑海里有立体图形的'浮现。
2、在探索具体计算表面积我关注了几下几点,第一,先想计算策略,让孩子们说一说打算怎么计算,那孩子们都会说,把六个面加起来,有的孩子说了不必每一个面都求,对面相等,只要求出三组面。第二,让孩子们说清楚计算的过程,有条不紊的阐述自己的计算过程,我就追问为什么要乘以2这样的细节问题。第三,引导孩子去概括总结计算的公式,最后大家一起总结得到一个公式,用长宽高来表示这个公式。同时出示长和宽都相等的长方体,让学生体会,按公式计算不会重复或遗漏,这样的计算表面积更加是准确。第四、在出示长方体与正方体表面积公式之后,着手让孩子们去比较长方体与正方体表面积计算有什么相同与不同之处,我觉得这里的相同之处十分重要,让孩子们明白求一个完整的长方体和正方体的表面积实际上是在求外面六个面的面积总和,无论孩子们的计算过程如何,公式又是如何,本质就是求那六个面的面积之和。
《长方体表面积》教学反思5
【教学实录】
(一)创设情境,提出问题
师:(电脑出示饼干盒、木箱)这两个物体大家认识吗?它们分别是什么体?
生1:饼干盒是长方体。
生2:木箱是正方体。
师:对于长方体和正方体你们已经知道了什么?
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体相对面的面积相等。
生3:长方体的每个面都是长方形,可能有两个相对面是正方形。
生4:正方形的6个面的面积相等。
……
师:同学们知道的可真多,那对于这两个物体你还想知道什么?
生1:我想知道它们的12条棱共有多长?
生2:我想知道它们的面积是多少?
……
师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)
(二)探究
1、表面积的意义
师:那什么叫做长方体和正方体的表面积?
(拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?
生1:(边摸边说)长方体6个面的和是它的表面积。
生2:(边摸边说)正方体6个面的和是它的表面积。
师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。
师:现在知道了长方体和正方体6个面的总面积,就叫做她们的表面积。我们身边还有许多物体,你能举例说说它们的表面积吗?
生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)
生2:橡皮的6个面的面积和是它的表面积。(边说边摸)
……
师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。
(指名学生上来边摸边说)
师:象这些物体几个面的总面积,就叫做它们的表面积。
2、表面积的计算
(1)一般长方体的表面积计算
师:现在我们知道了什么叫做物体的表面积,(拿出1号长方体木块)请同学们猜猜这个长方体的表面积可能会和它的什么有关?
生1:可能和长方体的棱长有关。
生2:可能和它的长、宽、高有关。
师:那请大家再猜猜它的表面积大概会是多少?
生1:74平方厘米。
生2:90平方厘米。
生3:120平方厘米。
……
师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?
生:敢。
师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。
数据记录计算方法
长方体长:
宽:
高:
(自主探究)
师:接下来我们在小组里交流一下自己的方法,交流时要求每位同学都说说自己的方法,交流结束后各小组准备派两个代表汇报。(生在小组里交流)
师:各小组准备汇报你们组里的方法,汇报时先说说记录下来的数据,再说说你们是怎样求得它的表面积?
生1:我们先算上面的面积10×6,再算左侧面的面积4×6,再算前面面的面积10×4,因为长方体相对面的面积相等,所以把3个面的面积加起来,再把它们的和乘以2,10×6+4×6+10×4(方法一)
生2:我是先算上面的面积10×6,因为上下两个面的面积相等,所以上下面的面积和是10×6×2,再算前面的面积10×4,因为后面的面积和它也相等,所以前后面的面积和是10×4×2,然后算左侧面的面积6×4,右侧面的面
积和它相等,它们的和是6×4×2,最后把他们加起来是10×6×2+10×4×2+6×4×2。(方法二)
生3:10×(4+6)×2+4×6×2(方法三)。
师:你是怎样想的?
生3:因为前后两个面的面积是10×4×2,上下两个面的面积是10×6×2,两部分合起来是10×4×2+10×6×2,我再利用乘法分配律把它改写成10×(4+6)×2,再加两个侧面的面积10×(4+6)×2+4×6×2。
师:你真聪明!
师:现在我们来看看刚才的猜测,我们猜得准吗?
生:不准。
师:不过同学们还是很能干,研究出了这么多种计算长方体表面的方法,那么,在这么多种计算方法中,你比较喜欢哪一种?
生1:我比较喜欢第一种方法。
生2:我喜欢第三种。
……
(2)特殊长方体、正方体的表面积计算
师:接下来,我们就用自己喜欢的方法来解答两个物体的表面积,每个桌上还有两个物体,2号长方体的长是8厘米,宽是5厘米,高也是5厘米,正方体的棱长是5厘米,请你们求出他们的表面积。
生独立计算后交流
师:我们先来看2号物体,说说你是怎样解答的?
生1:8×5×2+8×5×2+5×5×2。
生2:(8×5+8×5+5×5)×2。
生3:8×5×4+5×5×2。
师:说说你是怎样想的?
生3:因为这个长方体的左右两个侧面是正方形,所以中间4个面就相等,先算出一个面的面积8×5,把它乘以4就可以了,再加上两个侧面的面积5×5×2,就是8×5×4+5×5×2。
师:这三种方法,你们比较喜欢哪一种?
生:第三种。
师:我们再来看看这个正方体,你是怎样求它的表面积的?
生1:5×5×6,我是这样想的:因为正方体6个面的面积相等,所以可以先算一个面的面积,再乘以6。
生2:5×5×2+5×5×2+5×5×2。
师:哪种方法比较简便?
生:第一种。
师:看来特殊情况下,我们还要灵活处理,可能回有更好的方法。
……
【教学反思】
1、鼓励大胆猜想,诱发探究意识
关于猜想,著名数学教育家波利亚有一段精彩的论述:我想谈一个小小的建议,可否让学生在做题前猜想该题的结果或部分结果。一个孩子一旦表示出某些猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想正确与否,于是他便主动地关心这道题,关心课堂的进展。在教学中,我从学生的生活实际出发,设计问题情境,为学生提供两种生活中常见的几何体(饼干盒、木箱),要学生说说“对于这两个物体,你已经知道了什么?”“还想知道什么?”使他们自发地提出所要探究的问题,然后再鼓励学生用自己的思维方式大胆地猜想:“这个长方体的表面积可能与什么有关?”“它的表面积大概会是多少?”学生凭借自己直觉和自己的数学实际,提出各种看法,虽然有些“猜想”是错误的,但创新的智慧火花瞬间被点燃,同时一种种不同的猜想又激起了学生的探究愿望和进行验证的需要。
2、搭建探究舞台,挖掘思维潜力
在上面的教学中,在学生独立探究长方体表面积计算的活动中,先引导学生思考“求长方体表面积需要测量哪几条棱?”“怎样计算他的表面积?”这两个问题,再让学生独立思考。在这独立思考的'过程中,每个学生都在根据自己的体验,用自己的思维方式自由的、开放地去探究,去发现解决长方体的表面积计算方法。在测量棱长的过程中,有的学生只测量长方体的长、宽、高就可计算,而有的学生其实也测量长、宽、高,但他们需要测量6次,也有的学生测量12次。在探索其计算过程中,有的学生是先算上面的面积10×6,因为相对面的面积相等,所以只用再乘以2,也就是10×6×2+10×4×2+6×4×2,有的是(10×6+10×4+6×4)×2,还有两位学生解决的方法更是出乎意料。在这过程中,我们不难发现学生的活动是自主的,是鲜活生动的,是富有个性和创造的,学生的创造潜力能在这样的活动中得到充分的发挥。学生经过自己的探究,找到了解决的方法,不仅智慧能力得到发展,而且获得了深层次的情感体验。
3、提供交流机会,实现合作互动
由于学生之间存在着各种差异,学习内容开放,学习活动自主。因此,面对同样的问题,学生中会有出现各种各样的思维方式
《长方体表面积》教学反思6
本节课教学时我主要运用操作实验法、引探发现法、小组合作学习法等多种方法,给学生提供自主探索的平台,让学生通过小组合作学习,操作实验、观察、猜想、发现推导出长方体和正方体体积计算统一公式,让学生亲身经历知识的形成全过程,从而证明了自己的能力,品尝到成功的喜悦。培养学生的合作意识和实践能力。
一、利用实际生活中的实物,引导学生解决实际问题。
二、运用找到的规律,进行实际操作。
体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,我特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,我结合实际的教具,引导学生进一步对长方体和正方体体积公式的`强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。
《长方体表面积》教学反思7
通过本节课的教学,我总结出以下两点:
1、理解表面积的定义上,出示一个长方体纸盒。
要包装礼盒,需要多大面积的纸片,求什么,把一个生活实际问题转化为一个数学问题,也就是要去求这个长方体的表面积,让孩子们指一指表面积在哪里。这个时候不急着去计算这个长方体的表面积,而是让孩子们想一想在我们的生活场景中哪些地方需要计算表面积的,孩子们举例了给教室贴瓷砖、做纸箱、做鱼缸、给教室的们刷漆,等等,这个时候我会追问你的场景中的表面积在哪里,像鱼缸是会少一个面的。这样为学生建立了空间想象的表象认识,学生在后面完成解决问题时就会在脑海里有立体图形的浮现。
2、在探索具体计算表面积我关注了几下几点:
第一,先想计算策略,让孩子们说一说打算怎么计算,那孩子们都会说,把六个面加起来,有的孩子说了不必每一个面都求,对面相等,只要求出三组面。
第二,让孩子们说清楚计算的过程,有条不紊的阐述自己的计算过程,我就追问为什么要乘以2这样的细节问题。
第三,引导孩子去概括总结计算的公式,最后大家一起总结得到一个公式,用长宽高来表示这个公式。同时出示长和宽都相等的长方体,让学生体会,按公式计算不会重复或遗漏,这样的'计算表面积更加是准确。
第四、在出示长方体与正方体表面积公式之后,着手让孩子们去比较长方体与正方体表面积计算有什么相同与不同之处,我觉得这里的相同之处十分重要,让孩子们明白求一个完整的长方体和正方体的表面积实际上是在求外面六个面的面积总和,无论孩子们的计算过程如何,公式又是如何,本质就是求那六个面的面积之和。
《长方体表面积》教学反思8
总的来说,这节课自我感觉在教学环节的设计、教学资源的运用、学生的自学以及学生对知识的达成等几个方面表现还比较不错。学生也学到了预期想让他们学的东西了。这从课后的测验中可以看出来。
在学生良好的学习行为方面,我认为比较好的是在小组自学中学习优秀的学生能够主动的帮助学习存在困难的学生。而且他们与老师之间形成了默契,既使不是小组学习只要老师的一个手势,他们就能明白应该去帮助哪位同学。
本节课我认为能够促进学生学习在很大程度上是课堂的教学程序。而且本节课在授课时是按照自己预先的教学设计一步一步的进行,只是根据设计在课将结束时对学生有一个测验,而这个测验没能在课堂中完成,我把这次测验改为学生的家庭作业,同样起到了检测的作用。
本节课只所以能够达到预期的目的,得益于本节课的各种教学行为包括活动按排、学生分组的合理性、教学资源运用的合理。在课堂上学生的活动主要按排在学生每完成一组练习后的小组活动,在小组中发现问题解决问题,这样就发挥了学习优秀学生的作用,他们就会把自己好的学习方法介绍给其余的.人。而教学资源主要利益于课前全组老师共同研讨形成的练习题。这些题一组一组,一层一层有针对性地对学生进行各种类型的训练,让学生在自学中掌握了各种类型的解题方法。
如果现在再让我来上这节课的话,我会在以下几方面进行调整。
首先,会把第一环节调整到课前布置给学生去完成,而在本节课上只是进行检查,这样又可以节省时间让学生自己支配。
第二,在总结时,会把求长方体的表面积的几种不同情况(五个面、四个面)的公式给学生总结出来。
第三,会补充一组关于正方体的几种不同情况(五个面、四个面)的表面积题目。
《长方体表面积》教学反思9
长方体和正方体的表面积这部分内容,是教材第二单元长方体(一)的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。
首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的.长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。
我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以2;对于今天提出的把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出第四种方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。
实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。
《长方体表面积》教学反思10
教材分析:例1教学长方体表面积的计算方法。例1先引导学生明确,要知道至少用多少平方米的硬纸板,实际上就是求这个长方体包装箱的表面积,然后根据所给出的微波炉包装箱的长、宽、高,确定每个面的长和宽各是多少,想出每个面的面积应该怎样算。然后,再列出计算表面积的式子,让学生计算。为了培养学生能够根据具体条件和要求,确定不同的面的面积怎样算,更好地发展空间观念,教材中没有总结长方体表面积的计算公式,而是让学生根据表面积的概念自己计算。 实际生活中,经常遇到不需要算出长方体6个面的总面积的情况。例如,制作没有盖的鱼缸、木箱或铁桶,粉刷房间的墙壁等,就需要根据具体情况考虑应该计算哪几个面的面积。教材通过教科书第34、35页的“做一做”加以说明,并且在练习中也适当加强了这方面的练习。
由于根据长方体的长、宽、高来确定各个长方形面的长和宽,对小学生来说是个难点。教材在练习六中采取分步走的办法,逐步使学生掌握。第1题,先练习求一个指定面的'面积,这样可以帮助学生根据直观图所给的条件,逐步弄清计算的是哪个面的面积,这个面的长和宽应该是多少,哪些面的面积相等,进而逐步掌握计算长方体、表面积的方法
教学目标:
1、知识目标:使学生获得长方体和正方体表面积的概念。初步掌握长方体表面积的计算方法,并能运用所学知识解决一些实际问题。
2、能力目标:发展学生的空间观念,培养学生的动手操作能力和共同研究问题的习惯。
3、情感目标:通过亲身参与探索实践活动,去获得成功的情感体验,激发学生学习数学的兴趣。
教学重点:建立表面积的概念,初步掌握长方体表面积的计算方法。 教学难点:根据长方体的长、宽、高,确定每个面的长、宽是多少。教具、学具准备:多媒体课件、长方体礼品盒、包装纸、小纸盒、剪刀、火柴盒、尺子等。
教学方法:加强动手操作,积极参与,发现问题借助于模型、多媒体课件,让学生观察、触摸、拼拆、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
《长方体表面积》教学反思11
《长方体的表面积》是小学数学五年级下册的内容,这部分知识的教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。
讲长方体的表面积之前给学生布置了任务,要求学生把数学课本附页1和附页2 的样图制作成长方体和正方体,提前调动学生感兴趣的学习情境,开课时我用学生亲手制作的长方体的实际的学具引入新课,学生自己观察长方体有六个面,要想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的.创新精神。为此,我出示了以下几种情况的练习:比如无盖的玻璃鱼缸、没有底面的洗衣机罩,学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
因为是从平面到立体,从二维到三维,成人看似简单,而对小学生却有一定的难度。学生的作业反映出来的问题屡见不鲜,因为与实际生活联系比较密切的例子比比皆是,且各有特点,有些题学生考虑不全面,有些却是无所适从,刚刚学过长方体和正方体的表面积,有个别学生不分青红皂白,不认真审题,如果在课堂上我能够抓住学生实践的过程适时把展开的平面图做出点拨效果会更好。比如教科书练习六中的练习题,要在游泳池的四周和底面都贴上瓷砖,需要贴多少平方米的瓷砖,有些学生不认真审题最后求出来的是六个面的面积,紧接着下一道题是学校要粉刷教室,扣除门窗的面积后,学生没有考虑到地面不用粉刷,从而也是求的六个面的面积,与实际生活联系后,他们就会恍然大悟,而反映出他们理解问题的片面性,不够灵活。
有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。例如,礼堂中有四根长方体形状的木柱,底面是正方形,边长是5分米,高5米,这四根柱子占地面积是多少分米?有个别学生依然把底面积和表面积混淆,把简单问题复杂化。
数学知识从生活中来,但是他们动手能力差,空间想象力欠佳,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问,期中考试中有一道题目,出示的是纸盒的展开图,有些学生仍然一如既往去求六个面的面积,对实物的展开图认识模糊,能清楚的知道长方体的具体的长、宽、高,但没有认真观察纸盒到底有几个面,最后看到卷子时感到很遗憾。
数学知识从生活中来,但是他们动手能力差,空间想象力欠佳,思维跟不上,对所学的知识没有吃透,似懂非懂又不及时追问,20xx年石油分局教育质量检测中有一道题别出心裁,让学生用塑料棒,卡纸等材料,亲自为妈妈做一个长方体花瓶,多数学生知道从8根10厘米、3根16厘米、6根20厘米长的塑料棒中选择8根10厘米和4根20厘米长的塑料棒拼成长方体框架。紧接下来让学生用一张边长为30厘米的正方形卡纸,裁剪出粘贴花瓶所需的材料,并画出示意图,算出花瓶的表面积,此题学生完成的不是很理想,丢分比较集中,有些学生没有和上面的条件联系起来,有些学生无从下手,也有少数学生想当然的画出六个面,求六个面的面积,由此看出在平时学生的动手能力还有欠缺,平时只是注重让学生自己准备材料制作长方体或正方体,没有为学生提供更全面、灵活的生活素材,以后教学中应引以为戒,应该在平时对教材有更深入的研究,也应该全方位的去拓展学生思维,尤其是长方体和正方体这一部分内容,在生活中学生对长方体可以说司空见惯,在学习新知时学生也是兴味盎然,积极性很高,但数学知识具有高度的抽象性,今后要多引导学生在动手操作中思考加工,培养技能技巧,促进思维发展,在平时的教学中有时怕学生在课堂上忘乎所以,不好组织,所以尽量避免让学生动手操作,今后也应吸取本次的经验,尽可能的让学生多动手,动手的同时也会拓展学生的思维,达到举一反三,触类旁通的效果。以后的教学中我应注重通过观察物体、制作模型、设计图案等活动,将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。并给学生机会,让学生充分发表自己的见解。
综合以上几个典型的例子,今后的教学中对一些基本的知识点也应该以点带面,较突出的问题进行讲解,点评,尤其是知识点、关键点、易错点、解题规律,解题方法,多种方法的共性,讲解分析过程的失误,今后也要注意多聆听学生的讲解,及早发现,及时纠正学生的失误,提高分析问题与解决问题的能力。
《长方体表面积》教学反思12
一、利用旧知识,激发学生的学习兴趣。
新课标的教学理念是在数学教学过程中要把枯燥无味的数学教学变为学生感兴趣知识,要确立学生的主体地位,那么在教学中必定要注重学生的动手操作和学生对知识的探讨过程。在活动中,一方面要巩固学生所学的知识,利用旧知识解决新问题,让学生自己提出问题,猜测结果,除此之外教师进行适当引导。在《长方体和正方体的表面积》这一知识的教学中,我首先要求学生说出长方体和正方体的特征,做好复习工作,同时提出新问题——长方体六个面的面积合并起来又是什么样的面积呢?要求这个面积又怎样求呢?你能求这个面积吗?这样激发学生的学习兴趣
二、通过实际操作,解决生活中的实际问题。
在学习长方体的表面积之前,首先要求学生拿出自己制作好的长方体实物,然后教师也拿同样的长方体教具进行教学。在没有展开长方体的表面之前,教师引导学生分别用手点出长方体的.上、下、前、后、左、右这六个面,并说出这六个面各自的长和宽,然后启发学生想:要求它的表面积,这六个面可以分为几组,每组有几个面?各组的长和宽又是长方体相对应的长、宽、高的哪个长度?接着让学生进行学习小组讨论,并要求每个小组派一人汇报自己小组的讨论结果,从而归纳出:可分为三组:分别是上、前、左,每组有2个面,各自的长和宽分别是长方体的长和宽、长和高、宽和高,要求长方体的表面积就是把上面加前面再加左面的和乘以2,用长方体的长、宽、高表示就是:(长×宽+长×高+宽×高)×2,这时,要强化学生记住,长×高、长×宽、宽×高各是长方体的哪个面,有利于下面教学求长方体的四个面或五个面的面积。在学生掌握了长方体的表面积的公式以后,教师就举出实际生活中的一些长方体实物,给出长方体的长、宽、高,引导学生运用公式进行计算长方体的表面积。
三、根据实际,在教学中教会学生灵活运用公式。
在学生掌握了求六个面的长方体的表面积时,教师要注意引导学生怎样去解决实际生活中碰到实物,如粉刷一截明水渠、教室、烟囱等。要求它们的表面积,又怎样求呢?这时教师可以引导学生画出“一截明水渠的立体图”,指导学生观察教室和烟囱,它们要粉刷的是哪几个面?要求这些立体图形的表面积就是求几个面的面积,要求这几个面的面积与上面所学的求六个面的面积的公式有哪些变化?然后又让学生进行小组讨论,找出求长方体三、四、五个面的表面积的公式。
我记得新课程标准里面有这样的一句话: 教师是科学学习活动的组织者、引领者和亲密的伙伴。我在教学中就注意到了这一点,做到引导让学生自主探讨、合作学习,使学生体会到成功的喜悦,从而又提高了学生的学习积极性。
《长方体表面积》教学反思13
“长方体和正方体的表面积”教学内容,是在学生初步认识了长方体和正方体特征,知道它们都有6个面、12条棱、8个顶点。长方体的每个面都是长方形,相对的面的形状相同,大小相等;12条棱分为3组;相交于一个顶点的三条棱的长,分别叫做长方体的长、宽、高,以及正方体的6个面都是面积相等的正方形的基础上而学习的。对于表面积的概念与平面图形的面积,既有联系又有区别。同时是后继学习的基础。
我认为表面积的概念的学习,要是通过学生对长方体特点的`感知并懂得表面积的意义基础上,进行学习。学生虽然会正确求长方形的面积,但要求表面积,这是一个质的飞跃。为什么呢,因为是从平面到立体,从二维到三维。成人看似简单,而对小学生却有一定的难度。同时,小学生往往习惯于迁移,长方形面积明明是长×宽,而现在怎么变成长×高、宽×高了呢?这对于一部分学生来说,肯定存有困惑。所以要把长方体展开,变6个面为一个面,这种转化不是老师来完成,而是在学生思维中展开,因此,在前一课时就应打下一定基础:上下面:前后面、左右面等概念!对立面相等等知识点。再通过观察长方体的每一个面的面积任何计算!有没有简便方法等。
在教学中,激发学生的学习积极性显得尤为重要!思维的活跃,积极的学习是本堂课成功的的关键。
不足之处:在教学中、思维的发散显得不够!以至于在后来的无盖,甚至四个面计算中部分同学不理解!
非常遗憾、值得反思!
《长方体表面积》教学反思14
“追问”,顾名思义就是追根究底地问。它是前次提问的延伸和拓展,是为了使学生弄懂弄通某一内容或某一问题,在一问之后又再次补充和深化、穷追不舍,直到学生能正确解答、深入理解、沟通联系。
在教学《长方体的表面积》时,我采用“追问”方式,沟通“体和面”之间的关系。有效的“追问”,让课堂上高潮迭起,精彩纷呈。
在课堂上,我首先让学生找出长方体展开图与长方体各个面之间的关系,将长方体和展开图向对应的部分涂上颜色;找出长方体的长、宽、高与展开图的各个边之间的关系,填写展开图各个边的长,教学至此,我没有马上进入到下一环节“长方体表面积的计算”中,而是“追问明理”:
追问:老师把展开图形又折叠成了长方体你还能找到每个面对应的数据吗?你能找到右面对应的数据吗?
生:3和7,3是右面的宽,7是右面的长。
生:(补充)3既是右面的宽也是这个长方体的高。
师:多聪明呀,用了一个关联词“既……又……”表示出这个3的双重身份:对于右面它是宽,对于长方体它是高。
【评析:一石激起千层浪,教师的追问激起了学生的兴趣,互相补充加深学生对“体和面”的理解】
追问:你能找到长方体的下面所对应的数据吗?(全班学生都跃跃欲试)
生:3和5,5是下面的长,3是下面的'宽。
【评析:接下来的追问,调动的所有学生的积极性,大家不约而同的积极寻找答案。】
追问:长方体左面的对应的数据又是什么?
生:3和7,7是左面的长,3是左面的宽。
生:(补充)长方体的相对的面的面积相等,因此左面的数据和右面的数据应该是一样的。
【评析:学生的思维越来越活跃,通过互相启发,得出越来越简便的判断方法。】
在上面的教学片段中,我先从“体”到“面”,接着通过有效的“追问”,让学生再从“面”回到“体”,这样学生经历了“体——面——体”的转化过程,为长方体表面积的计算打下了坚实基础。
总之,“追问”是促进学生学习、实现“有效学习”的重要教学指导策略。而追问不在于多,在于是否能让学生感受到进行智力劳动的乐趣。在有效的追问中,教师和学生都是思考着、发展着的主体,并互相影响着,数学课堂因“追问”而精彩纷呈。
《长方体表面积》教学反思15
本节课教学的重点是让学生根据生活实际确定求长方体、正方体几个面的面积。在课堂上我花了较多时间让学生小组交流、辨析,搞清楚有时不需要计算6个面的总面积,只需要计算某几个面的总面积,要根据实际情况思考要求哪几个面的面积和,并说清楚每一个面的面积怎样计算。在课堂上我花了较多时间让学生小组交流、辨析,搞清楚有时不需要计算6个面的`总面积,只需要计算某几个面的总面积,要根据实际情况思考要求哪几个面的面积和,并说清楚每一个面的面积怎样计算。
例题教学后,我出示了讲台上的无盖粉笔盒,告知学生这个粉笔盒长11厘米,宽6厘米,高5厘米,让学生计算钉成这样一个粉笔盒至少要用多少平方厘米木板。学生在练习中集中出现了两个问题:
1、少数学生根本没有认真观察实物演示,忽视了无盖的实际情况,当成计算表面积的练习;
2、有些学生注意到缺少了一个面,但在运用哪些数据计算时互相混淆,这是上一课时中的遗留问题。
另外练习中还发现部分学生习惯于先计算立体图形的表面积再减去缺少的面的面积,好在通过后续的计算练习,学生自主选择了更为简便的计算其中几个面的计算方法。
【《长方体表面积》教学反思】相关文章:
《圆柱的表面积》教学反思06-29
表面积的变化教学反思03-13
《圆柱的表面积》教学反思04-14
《长方体的认识》的教学反思05-24
长方体体积教学反思11-19
《圆柱的表面积》教学反思 15篇08-30
《长方体和正方体的认识》教学反思07-19
《长方体和正方体的认识》教学反思09-22
长方体教学教案02-26