八年级数学上册的教案

时间:2024-10-21 07:39:47 教案 我要投稿

八年级数学上册的教案

  作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?下面是小编收集整理的八年级数学上册的教案,欢迎阅读与收藏。

八年级数学上册的教案

八年级数学上册的教案1

  教学目标

  1.等腰三角形的概念。

  2.等腰三角形的性质。

  3.等腰三角形的概念及性质的应用。

  教学重点:

  1.等腰三角形的概念及性质。

  2.等腰三角形性质的应用。

  教学难点:

  等腰三角形三线合一的性质的理解及其应用。

  教学过程

  1.提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:

  ①三角形是轴对称图形吗?

  ②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的'三角形不是。

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  2.导入新课:要求学生通过自己的思考来做一个等腰三角形。

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴。

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的。高所在的直线呢?

  结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”)

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS)

  所以∠B=∠C

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数。

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A

  再由三角形内角和为180°,就可求出△ABC的三个内角。

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC

  ∠A=∠ABD(等边对等角)

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°在△ABC中,∠A=35°,∠ABC=∠C=72°

  [师]下面我们通过练习来巩固这节课所学的知识。

  3.随堂练习:课本P51练习1、2、3. 阅读课本P49~P51,然后小结。

  4.课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

  5.作业:课本P56习题12.3第1、2、3、4题。

八年级数学上册的教案2

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用

  2.难点:灵活地应用公式法进行因式分解

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容

  教学过程

  一、回顾交流,导入新知

  问题牵引:

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2

  知识迁移:

  2.计算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2

  教师活动:引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2

  学生活动:从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  归纳公式:完全平方公式a2±2ab+b2=(a±b)2

  二、范例学习,应用所学

  例1:把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4

  例2:如果x2+axy+16y2是完全平方,求a的值

  思路点拨:根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的'平方,由此相应求出a的值,即可求出a3

  三、随堂练习,巩固深化

  课本P170练习第1、2题

  探研时空:

  1.已知x+y=7,xy=10,求下列各式的值

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值

  四、课堂总结,发展潜能

  由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

  (2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

  (3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解

  五、布置作业,专题突破

八年级数学上册的教案3

  教学目标

  一、教学知识点:

  1、旋转的定义

  2、旋转的基本性质

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义。

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观

  教学重点:

  旋转的基本性质

  教学难点:

  探索旋转的基本性质

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一。巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)。

  (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的

  2.每个物体的转动都是向同一个方向转动

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转。

  二。讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate)。这个定点称为旋转中心,转动的角称为旋转角。注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。

  议一议:(课本67页)答:

  (1)旋转中心是O点,旋转角是∠AOD。旋转角还可以是∠BOE。

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置。这时点A旋转到点D的位置,点B旋转到点E的位置。

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的。同样,线段OB与OE是相等的。

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的`每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的。

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的。

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点。从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的。

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的。

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等对应点到旋转中心的距离相等。

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出。

  解:(见课本68页)

  书上68页做一做

  三。课堂练习

  课本P69随堂练习

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°

  四。课时小结

  五。课后作业:课本P69习题3.4 1、2、3

  六。活动与探究

  1、分析图中的旋转现象过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的

  2、图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°前后的图形共同组成的

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的

《八年级数学上册的教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【八年级数学上册的教案】相关文章:

八年级数学上册教案06-08

八年级上册数学教案01-13

生物八年级上册教案06-08

八年级上册数学教学反思06-14

八年级英语上册教案模板06-17

人教版八年级上册地理教案河流01-30

初中八年级上册语文教案01-29

八年级数学下册教案05-19

八年级数学教案06-20

八年级数学上册的教案

  作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?下面是小编收集整理的八年级数学上册的教案,欢迎阅读与收藏。

八年级数学上册的教案

八年级数学上册的教案1

  教学目标

  1.等腰三角形的概念。

  2.等腰三角形的性质。

  3.等腰三角形的概念及性质的应用。

  教学重点:

  1.等腰三角形的概念及性质。

  2.等腰三角形性质的应用。

  教学难点:

  等腰三角形三线合一的性质的理解及其应用。

  教学过程

  1.提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:

  ①三角形是轴对称图形吗?

  ②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的'三角形不是。

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  2.导入新课:要求学生通过自己的思考来做一个等腰三角形。

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴。

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的。高所在的直线呢?

  结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”)

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS)

  所以∠B=∠C

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数。

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A

  再由三角形内角和为180°,就可求出△ABC的三个内角。

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC

  ∠A=∠ABD(等边对等角)

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°在△ABC中,∠A=35°,∠ABC=∠C=72°

  [师]下面我们通过练习来巩固这节课所学的知识。

  3.随堂练习:课本P51练习1、2、3. 阅读课本P49~P51,然后小结。

  4.课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

  5.作业:课本P56习题12.3第1、2、3、4题。

八年级数学上册的教案2

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用

  2.难点:灵活地应用公式法进行因式分解

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容

  教学过程

  一、回顾交流,导入新知

  问题牵引:

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2

  知识迁移:

  2.计算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2

  教师活动:引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2

  学生活动:从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  归纳公式:完全平方公式a2±2ab+b2=(a±b)2

  二、范例学习,应用所学

  例1:把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4

  例2:如果x2+axy+16y2是完全平方,求a的值

  思路点拨:根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的'平方,由此相应求出a的值,即可求出a3

  三、随堂练习,巩固深化

  课本P170练习第1、2题

  探研时空:

  1.已知x+y=7,xy=10,求下列各式的值

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值

  四、课堂总结,发展潜能

  由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

  (2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

  (3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解

  五、布置作业,专题突破

八年级数学上册的教案3

  教学目标

  一、教学知识点:

  1、旋转的定义

  2、旋转的基本性质

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义。

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观

  教学重点:

  旋转的基本性质

  教学难点:

  探索旋转的基本性质

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一。巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)。

  (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的

  2.每个物体的转动都是向同一个方向转动

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转。

  二。讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate)。这个定点称为旋转中心,转动的角称为旋转角。注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。

  议一议:(课本67页)答:

  (1)旋转中心是O点,旋转角是∠AOD。旋转角还可以是∠BOE。

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置。这时点A旋转到点D的位置,点B旋转到点E的位置。

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的。同样,线段OB与OE是相等的。

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的`每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的。

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的。

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点。从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的。

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的。

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等对应点到旋转中心的距离相等。

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出。

  解:(见课本68页)

  书上68页做一做

  三。课堂练习

  课本P69随堂练习

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°

  四。课时小结

  五。课后作业:课本P69习题3.4 1、2、3

  六。活动与探究

  1、分析图中的旋转现象过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的

  2、图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°前后的图形共同组成的

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的