- 相关推荐
全等三角形教案优秀
在教学工作者开展教学活动前,时常需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。快来参考教案是怎么写的吧!下面是小编整理的全等三角形教案优秀,欢迎阅读,希望大家能够喜欢。
全等三角形教案优秀1
课程内容
边边边判定定理
选用教材
人教版数学八年级上册
授课人
崔志伟
授课章节
第十二章第二节
学时
1
教学重点
掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。
教学难点
探索三角形全等的条件,以及运用边边边定理画一角等于已知角
教学方法
学生合作探究法、教师讲解结合谈话法等综合教学方法
教学手段
黑板板书教学
课堂教学设计
阶段
教学内容
导入部分
采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。
学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。
阶段
课堂教学设计
课程新授
教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。
但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。
接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。
学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。
首先引导学生对三组对应关系相等进行分类。
预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。
本节课将引导学生探索三边相等的情形,有了前面两组对应相等的'经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。
接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。
由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。
学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。
之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。
作业
作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。
板书设计
采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。
小结
本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。
全等三角形教案优秀2
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线。
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式:(略)
强调说明:
(1)格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)此公理与前面学过的公理区别与联系
(4)三角形的稳定性:演示三角形的`稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的点评。
例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1=只要证什么?
(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
(2)讲解例2(投影例2)
例2已知:如图AB=DC,AD=BC
求证:∠A=∠C
(1)学生思考、分析、讨论,教师巡视,适当参与讨论。
(2)找学生代表口述证明思路。
思路1:连接BD(如图)
证△ABD≌△CDB(SSS)先得∠A=∠C
思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
例3如图,已知AB=AC,DB=DC
(1)若E、F、G、H分别是各边的中点,求证:EH=FG
(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上写出证明,然后选择投影显示。
证明:(略)
说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。
例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,求证:AC=2AE。
证明:(略)
学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。
5、课堂小结:
(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)
在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业:
a、书面作业P70#11、12
b、上交作业P70#14 P71B组3
全等三角形教案优秀3
【教学目标】
1、使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2、继续培养学生画图、实验,发现新知识的能力。
【重点难点】
1、难点:让学生掌握边边边公理的内容和运用公理的自觉性;
2、重点:灵活运用SSS判定两个三角形是否全等。
【教学过程】
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ ABC与△全等吗?你是如何判定的。
(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全
等。满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为xx,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。
步骤:
(1)画一线段AB使它的长度等于c(4.8cm)。
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C。
(3)连结AC、BC。
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的结论
请你结合画图、对比,说说你发现了什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的.。这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简写为边边边,或简记为(S.S.S)。
2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)
3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
4、范例:
例1如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA。解:已知AD=BC,AB=DC,又因为AC是公共边,由(S.S.S。)全等判定法,可知△ABC≌△CDA
5、练习:
6、试一试:已知一个三角形的三个内角分别为、 、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?
(所画出的三角形都是相似的,但大小不一定相同)。
三个对应角相等的两个三角形不一定全等。
三、加强练习,巩固知识
1、如图,,,△ABC≌△DCB全等吗?为什么?
2、如图,AD是△ABC的中线,。与相等吗?请说明理由。
四、小结
本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等。三个角对应相等的两个三角不一定会全等。
五、作业
全等三角形教案优秀4
〖教学目标〗
◆1、探索两个直角三角形全等的条件。
◆2、掌握两个直角三角形全等的条件(hl).
◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“hl”。
◆教学难点:直角三角形判定方法的说理过程。
〖教学过程〗
一、创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、合作学习:
1、回顾:判定两个直角三角形全等已经有哪些方法?
2、有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
“斜边和一条直角边对应相等的两个直角三角形全等(hl)。”
教师归纳出方法后,要学生注意两点:
“hl”是仅适用于rt△的特殊方法。
三、应用新知,巩固概念
例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。
分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop
小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)角的内部,到角的`两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:课本p82课内练习
五、小结回顾,反思提高
(1)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)?
(2)你现在知道的有关角平分线的知识有哪些?
六、作业:
1、作业本2.8
2、课后作业
全等三角形教案优秀5
【教学目标】
1、使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2、继续培养学生画图、实验,发现新知识的能力。
【重点难点】
1、难点:让学生掌握边边边公理的内容和运用公理的自觉性;
2、重点:灵活运用SSS判定两个三角形是否全等。
【教学过程】
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ ABC与△全等吗?你是如何判定的'。
(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。)
上一节课我们已经探讨两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等。满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为xx、xx、xx,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。
步骤:
(1)画一线段AB使它的长度等于c(4.8cm)。
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C。
(3)连结AC、BC。
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的结论
请你结合画图、对比,说说你发现什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的。这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(SSS)。
2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)
3、问题3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定,这个三角形的形状和大小就完全确定)
4、范例:
例1四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA。解:已知AD=BC,AB=DC,又因为AC是公共边,由(SSS)全等判定法,可知△ABC≌△CDA
全等三角形教案优秀6
一、教学内容分析
本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析
学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想
我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标
1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。
五、教学重点和难点
重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。
难点:三角形全等条件的探索中的分类思想的渗透。
六、教学过程设计
具体设计的教学过程描述如下:
(一)创设情境,提出问题
1.出示多媒体:
大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?
[学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。
[设计意图]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。
(二)探索发现,合作交流
1、一个条件
按照三角形“边、角”元素进行分类,师生共同归纳得出:
一个条件:一边,一角;
再按以上分类顺序动脑、动手操作验证。
2、验证过程可采取以下方式:
画一画:按照下面给出的一个条件各画出一个三角形。
①三角形的一条边长是8cm;
②三角形的一个角为60°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
对只给一个条件画三角形,画出的三角形一定全等吗?
同组同学互相比较,观察得出结果。小组代表说明本小组的结论。
再结合展示幻灯片。以便强化结论。
教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。
3、二个条件
继续探索二个条件的情况,师生共同归纳得出:
两个条件:二边,一边一角,二角;
[教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。
[设计意图]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。
4、画一画:按照下面给出的两个条件各画出一个三角形。
①三角形的两条边分别是:8cm,10cm;
②三角形一条边为7cm,一个角为30°;
③三角形的两个角分别是:30°,50°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
[学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。
[教师活动]在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。
5、学生展示本小组的结论
[设计意图]培养学生的合作意识调动学生的`主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。
[知识链接]这一知识点既是对后续归纳总结起到实验性证明。
6、教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。
[设计意图]从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。
7、继续探索三个条件的情况,师生共同归纳得出:
三个条件:三边,两边一角,一边两角,三角
再继续探索三个条件中的三条边的情况。
8、画一画:在硬纸板上画出三条边分别是10cm,12cm,14cm的三角形。
(对画图有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)
剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。
比一比:作出的三角形与其他同学作的比一比,是否全等。
9、全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。
[学情预设]全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。
[设计意图]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。很自然的突出重点。
(三)、归纳结论,解决问题
1、从上面的活动中,我们总结出:
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
学生由理解上升到口述出原理,以便以后更好的运用到实践中去。
[学情预设]学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。
2、成功的解决了上面提出的玻璃问题。
我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。
(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)
[设计意图]学以致用,发现问题解决问题。
全等三角形教案优秀7
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的.抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.
六、教学教程
Ⅰ.课题引入
1.电脑显示
问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
(学生分组讨论、提出方法、动手操作)
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的两个三角形全等,记作:△ABC≌△DEF
Ⅱ.全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
Ⅲ. 全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
全等三角形的性质:
全等三角形的对应边相等.
全等三角形的对应角相等.
2.用几何语言表示全等三角形的性质
如图:∵ABC≌ DEF
∴AB=DE,AC=DF,BC=EF
(全等三角形对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F
(全等三角形对应角相等)
Ⅳ.探求全等三角形对应元素的找法
1.动画(几何画板)演示
(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?
归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.
(2).说出每个图中各对全等三角形的对应边、对应角
归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.
3. 归纳:找对应元素的常用方法有两种:
(1)从运动角度看
a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.
b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
c.平移法:沿某一方向推移使两三角形重合来找对应元素.
(2)根据位置元素来推理
a.有公共边的,公共边是对应边;
b.有公共角的,公共角是对应角;
c.有对顶角的,对顶角是对应角;
d.两个全等三角形最大的边是对应边,最小的边也是对应边;
e.两个全等三角形最大的角是对应角,最小的角也是对应角;
Ⅴ.课堂练习
练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?
练习2.△ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗?请与同伴交
流并写出来.
Ⅵ.小结
1.这节课你学会了什么?有哪些收获?有什么感受?
2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
Ⅶ.作业
课本第92页1、2、3题
全等三角形教案优秀8
教学目标
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
[重点]
探究全等三角形的性质
[难点]
能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。
教学流程安排
活动1 利用电脑投影观察图形,探究得出全等图形的概念
活动2 观察平移、翻折、旋转的两个图形
活动3 全等形的练习
活动4 观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。
活动5探究全等三角形的性质
(课件演示)
活动6全等三角形性质的运用
活动7小结,布置作业
观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。
利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。
巩固全等性的概念
利用两个形状和大小相同的三角形通过平移
及自己动手作比较得出全等形三角形的概念。
通过图形的变换,形成对应的概念,获得全等形三角形的性质。
运用全等三角形性质解决问题
回顾反思,进一步理解和掌握全等三角形的概念及全等三角形的性质
教学过程设计
问题与情景
师生行为
设计意图
活动1
(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?
(2)你能再举出生活中的一些实际例子吗?
(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?
教师演示课件,提出问题,学生思考、交流。
学生思考发表见解。
学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。
教师给出全等形的概念。
教师提出要求,学生动手操作,并做观察、回答问题。
本次活动中,教师应重点关注:
(1)学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;
(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。
运用贴近学生生活的图案激发学生探究的兴趣。
通过问题(1),引导学生从图形的形状与大小的角度去观察图形。
图形全等形、在生活中大量存在,创设这样的问题情境,引导学生有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究欲望。
通过动手实践,获得全等形的体验。
[活动2]
观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?
教师提出要求。
学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。
培养学生对图形的识别能力。
[活动3]
对全等形知识的练习。
教师提问。
学生思考回答问题。
学生能准确快速的找出答案。
运用全等形的概念
[活动]4
问题
动手操作,将剪得的两个三角形纸板重合放在图中
△
ABC的位子上,试一试:
如:教科书图13.1、图13.2、
图13.3
观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?
教师提出要求。
学生用两个三角形纸板实践
教师用课件展示。
学生猜测,发表意见得出全等三角形的概念。
教师应关注:
(1)对实践操作的理解。
(2)是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。
学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。
[活动]5
问题
课件演示:
(1)
将两个三角形完全重合,观察并指出重合的顶点、边和角。
(2)
如何用数学符号表示两个三角形全等呢?
(3)
观察两个三角形找出对应边、对应角。
(4)观察重合的两个三角形对应边、对应角的关系。
教师课件演示提出问题。
学生实践交流得出结论。
教师给出对应顶点、对应边、对应角的概念并板书。
学生观察并回答问题。教师引导学生归纳总结得出三角形的性质并板书。
教师应关注:
(1)
对应顶点、对应边、对应角的概念的理解。
(2)
全等符号的书写。
(3)
全等三角形性质的理解。
在教师演示课件的过程中,学生建立对应的概念。
学生学会掌握全等三角形的表达方式,会使用全等符号。
学生掌握全等三角形的性质。
[活动]6
(1)
课件演示提出问题:
填一填:(如下图)
(2)
练一练:
如图,已知ΔOCA≌ΔOBD,请说出它们的对应边和对应角。
C B
A D
(3)拓广探索:
如下图,矩形ABCD沿AM折叠,使D点落在BC上的.N点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN=___cm, NM=___cm, ∠NAB=___.
教师提出问题。
学生分组探究。
观察学生能否快速找出对应的边与角。
教师利用课件演示提问。
学生再一次对对应边与角的掌握。
教师提问。
学生独立思考回答并说出解题过程。
教师给出解题答案。
本次活动中,教师关注的重点:
(1)
学生能否快速准确的找出对应边、对应角。
(2)
学生对全等三角形的性质的理解。
(3)
同学之间的交流与活动参与程度。
学生掌握对应边、对应角的找法
进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。
运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。
[活动]7
(1)
小结:谈谈本次活动的所获得的收获。
(2)
布置课后作业
教科书92页习题1。
学生分组总结。
教师布置作业,学生课后独立完成。
本次活动中,教师应重点关注:
(1)
对知识的梳理、总结的习惯。
(2)
小组合作意识
(3)
学生对本节内容的理解程度。
(4)
学生对全等三角形的情感认识。
加深学生对知识的理解,促进学生对课堂的反思。
巩固、提高、反思。使学生对知识的掌握。
【全等三角形教案优秀】相关文章:
全等三角形教案09-07
《全等三角形的判定》教案07-08
全等三角形教学反思06-26
认识三角形教案优秀08-02
认识三角形教案(优秀)07-30
三角形教案06-19
认识三角形教案03-14
三角形小学教案07-25
《三角形的面积》教案06-13