《平行四边形的面积》教案

时间:2024-06-23 16:55:19 教案 我要投稿

【实用】《平行四边形的面积》教案

  作为一名教职工,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。那么应当如何写教案呢?下面是小编为大家整理的《平行四边形的面积》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

【实用】《平行四边形的面积》教案

《平行四边形的面积》教案1

  1.平行四边形面积的计算。

  编排意图

  教材分三个步骤安排。

  (1)引入。从主题图中学校大门前的两个花坛(一个长方形,一个平行四边形)引入一个实际问题:两个花坛哪一个大?也就是要计算它们的面积各有多大。长方形的面积学生已经会计算,从而提出如何计算平行四边形面积的问题。

  (2)用数方格的方法计算面积。这是一种直观的计量面积的方法,在学习长方形和正方形面积计算时学生已经使用过,但是像平行四边形这样两边不成直角的图形该如何数?对学生讲是一个新问题。教材给出提示,不满一格的都按半格计算。教材安排同时数一个长方形和一个平行四边形的面积,再对它们的底(长)、高(宽)和面积进行比较,暗示这两个图形之间的联系,为学生进一步探寻平行四边形面积的计算方法做准备。

  (3)探究平行四边形面积计算公式。提出“不数方格能不能计算平行四边形的面积呢?”通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  最后把面积计算公式用字母表示。

  教学建议

  (1)结合引入环节进行长方形面积计算和平行四边形概念的复习。

  (2)数方格和填表环节要让学生独立完成,然后让学生交流一下是怎样数的和数的结果。有的学生可能用把斜边上的不满一格的两个格拼成一个方格的方法,也应给以肯定。要组织学生对填表的结果进行讨论,学生比较容易发现两个图形的底与长、高与宽和面积分别相等。教师可以进一步提问:根据你的发现你能想到什么?培养学生联想、猜测的能力,同时为下一步的探究提供思路。

  (3)探究平行四边形的面积公式是本课的重点。可以用提出假设——动手实验——推导——概括的步骤开展探究活动。

  第一步根据上面的讨论提出假设:是否可以把平行四边形变成一个长方形来计算出它的面积?

  第二步组织学生动手实验,要求每个学生准备一个平行四边形和一把剪刀。教师注意巡视和进行个别指导。学生一般会出现以下两种割补的方法,都应给以肯定。

  第三步小组讨论:观察拼出的长方形和原来的平行四边形你发现了什么?这是本课教学的关键,也是学生学习的`难点。有些学生可能不知怎样去思考。可以出示一些问题引导学生思考。

  ①拼出的长方形和原来的平行四边形比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?

  第四步进行全班交流,要求学生叙述出自己的推导过程。

  在此基础上利用多媒体课件或教具进行演示(如第81页的图),注意在演示过程中显示平移的方法。边演示边推导:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。

  这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  2.平行四边形面积计算公式的应用。

  可以先让学生试做,再通过集体订正检查掌握情况。

  3. 关于练习十五一些习题的说明和教学建议。

  第1、4题是应用问题,第1题直接应用公式计算。第4题要进行面积单位的化聚和除法计算。可在分析讨论题意的基础上让学生独立完成,再交流做法和结果,强调注意面积单位的变化。

  第2题要求学生自己想办法求出平行四边形的面积,有一定的探索性。学生需要先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。

  可以让学生先讨论再计算,也可让学生先独立做,再交流方法和结果。注意引导学生知道可以以不同的边作底来求出面积。

  第3题是逆用公式的题目,已知平行四边形的面积和底,求高。引导学生依据乘除法的互逆关系学会灵活运用公式或列方程解答。

  第5题认识等底等高的平行四边形的面积相等。先不要学生计算,引导学生讨论它们的面积相等吗?并说明理由(两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等)。

  第6题与第5题的道理相同,正方形与平行四边形等底等高,所以它们的面积相等。已知正方形的周长,可以求出正方形的边长,再求出正方形的面积,也就是平行四边形的面积。可以让学生先讨论,再解答。

  第7题借助课本上的示意图或做实物教具进行演示,让学生观察,讨论什么不变,什么发生了变化(四条边的长度不变,底边上的高发生变化)。从而得到它们的周长不变,但面积变了。还可以进一步讨论,面积怎样变化?什么情况下面积最大?

  第8题是选作题。根据A、B是大平行四边形上下两边的中点,可以证明阴影部分也是一个平行四边形。鉴于学生还没有这方面的知识,题中直接说明它是一个平行四边形。要求出小平行四边形的面积,必须知道它的底和高的长度,题中没有给出。但从A、B是大平行四边形上下两边的中点,可以推出小平行四边形的底是大平行四边形底长的一半,它们的高相等,所以小平行四边形的面积是大平行四边形面积的一半,即48÷2=24(cm2)

《平行四边形的面积》教案2

  教学目标:

  1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点:

  1、掌握平行四边形的面积计算公式。

  2、会计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推导过程.

  教具准备:课件,平行四边形的纸片。

  学具准备:学习卡,每个学生准备一个平行四边形。

  教学过程

  一、导入

  1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

  2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

  板书课题:平行四边形的面积

  二、平行四边形面积计算

  1.用数方格的方法计算面积。

  (1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

  说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

  (2)独立完成。

  (3)汇报结果。

  (4)观察表格的数据,你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  2.推导平行四边形面积计算公式。

  (1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?

  学生讨论,鼓励学生大胆发表意见。

  (2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的'平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。

  教师用课件或教具演示剪—平移—拼的过程。

  (3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)

  小组汇报,教师归纳:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

  4.出示例1。读题并理解题意。

  三、巩固和应用

  1、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等( )

  (2)平行四边形底越长,它的面积就越大( )

  2、计算。

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业:练习十五第1、2题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  《平行四边形的面积》教学反思

  本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。

  一、重在每个孩子都参与

  本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  二、渗透“转化”思想,让所积累的经验为新知服务

  “ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。

  虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!

《平行四边形的面积》教案3

  教学内容:

  九年义务教育人教版六年制小学课本第九册64页及例1

  教学要求:

  1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。

  2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。

  教学重、难点:

  理解面积公式的推导过程。

  教学准备:

  几个相同的平行四边形、投影、课件、剪刀

  教学过程:

  一、故事引入、设计情趣

  拍卖公告

  拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。

  新袁镇人民政府

  20xx年11月1日

  问:

  1、如果你想参加竞拍,那你应该知道哪些条件呢?

  2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?

  3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)

  二、动手操作、激发兴趣

  (1)、用数方格的方法计算平行四边形面积

  1、出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)

  2、出示一个长方形,再引导学生计算一下,说出结果。

  比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?

  小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?

  从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?

  (2)、用割补平移法推导平行四边形的面积公式

  3、让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。

  4、课件演示平行四边形转化成长方形的过程

  刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?

  (1)、先沿着平行四边形的高剪下左边的直角三角形。

  (2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  (3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合(教师巡视)

  (3)、引导学生比较

  5、这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?

  6、这个长方形的宽与原来的平行四边形的底有什么样的关系?

  7、这个长方形的宽与原来的平行四边形的高有什么样的关系?

  归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的.平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。

  (4)、引导学生总结平行四边形面积计算公式

  8、这个长方形的面积怎么求?(板书:长方形的面积:长*宽)

  9、那么平行四边形的面积怎么求?

  (5)、教学用字母表示平行四边形的面积公式S=a×h(告知S和h的读音)

  说明含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h或S=ah

  (6)、应用总结的面积公式计算平行四边形的面积

  10、回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?

  11、完成后让学生看书第65页例1

《平行四边形的面积》教案4

  教学内容:

  义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。

  3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。

  教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:平行四边形面积公式的推导过程。

  教具准备:多媒体课件、剪刀、平行四边形

  教学过程:

  一、情景引入,激趣导课

  建国60年来,我们的生活水平越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水平提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?

  导入新课,揭示图形板书课题。

  二、动手操作,探究新知

  1、复习:复习平行四边形的底和高。

  2、归纳意见,提出验证

  学生利用课前准备好的'平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。

  3、学生汇报结果,展示操作过程

  小组的代表来展示各组的操作方法。

  4、演示过程,强化结果

  多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?

  5、填空、归纳公式

  根据刚才的操作过程,完成填空题,并归纳板书公式。

  把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。

  6、提问质疑

  学生阅读课本81页的内容,质疑。

  三、分层练习,内化新知

  1、用公式分别算一算两个停车位的面积。

  2、计算相对应的底和高的平行四边形花圃面积。

  3、计算平行四边形牌两面涂漆的面积。

  4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。

  四:课堂。

  今天我们学习了什么?通过学习,你有那些新的收获呢?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  (转化)

  平行四边形的面积=底×高

  S=a×h

《平行四边形的面积》教案5

  教学内容:九义教材数学第九册第70~72页,练习十七第1~3题。

  素质教育目标:

  (一)知识教学点

  1.使学生理解并掌握平行四边形面积的计算公式。

  2.能正确地计算平行四边形的面积。

  (二)能力训练点

  1.通过操作,进一步发展学生思维能力。

  2.培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。

  (三)德育渗透点

  引导学生运用转化的思想探索规律。

  教学重点:理解并掌握平行四边形面积的计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程。

  教具学具准备:

  1.活动长方形支架。

  2.平行四边形演示课件。

  3.每个学生准备一张画上高的平行四边形纸板和剪刀。

  教学步骤

  一、铺垫孕伏1.出示活动长方形支架。提问:这是什么形体?怎样计算长方形的面积?板书:长方形的面积=长×宽

  2.把活动长方形支架对角一拉,使它变成平行四边形。提问:现在还是长方形吗?什么叫平行四边形?你能指出它的底和高吗?

  二、探究新知

  1.导入:我们学过长方形面积的计算。平行四边形的面积该怎样计算呢?这节课我们就来共同研究“平行四边形面积的计算”。板书课题。

  2.用数方格的方法计算平行四边形的面积。

  (1)打开书71页齐读第二段。

  (2)指名到实物投影仪上数。我先数......,它是......平方厘米;再数......,它是......平方厘米;两部分合起来是......平方厘米。

  (3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。

  (4)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?

  引导学生明确:平行四边形的'底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  (5)从前面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来很麻烦,且不精确。特别是较大的平行四边形,如花园那么大就不好数了。我们能不能也像计算长方形的面积那样,找出平行四边形面积的计算方法呢?

  3、通过操作,将平行四边形转化成长方形。

  (1)、提问。能不能用剪拼的办法将同学们手中的平行四边形转化成长方形呢?试试看。(每个只准剪一次。)

  (2)、提问。通过剪拼你发现了什么规律?任何一个平行四边形都可以转化成一个长方形。(只有沿平行四边形的高剪下。)在转化的过程中,怎样按一定的规律来做呢?(老师演示)

  A.先沿着平行四边形的高剪下左边的直角三角形。

  B.左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  C.移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边向右慢慢移动,到两个斜边重合为止。

  D、同学们像老师刚才演示那样,平移一次。(老师巡视指导)

  E、投影再显示平移过程,加深认识。

  4、归纳整理

  (1)、投影显示两个图形,比较。你发现了什么?请填71页书空。

  (2)、平行四边形转化成长方形后,面积有没有变化?长方形的面积和原来的平行四边形的面积怎么样?(板书)

  (3)、这个长方形的长与平行四边形的底怎么样?

  (4)、这个长方形的宽与平行四边形的高怎么样?

  (5)、这个长方形的面积怎么求?那么平行四边形的面积呢?(因为......所以......板书)

  (6)、请学生口述推导过程。同时投影演示。

  5教学字母公式

  (1)、介绍字母的意义及读法。(板书S=a×h)

  (2)、说明在含有字母的式子里,字母和字母中间的乘号可以记作“˙”,也可以省略不写。(板书s=a?h或s=ah)

  (3)、提问:计算平行四边形的面积,需要知道那些条件?

  6、应用公式计算

  (1)投影显示72页例题

  A、读题,理解题意。

  B、学生试做,提示得数保留整数。

  C、订正。老师出示正确答案。提问:此题根据什么这样列式?

  (2)、完成72页“做一做”第1、2题。

  A、抽两个同学在投影片上做,其余的在作业本上做。B、订正时提问:计算时注意那些问题?老师出示正确答案。

  三、巩固发展

  1、填空(出示投影)平行四边形面积计算公式的推导。任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。

  2、比较。73页第6题(出示投影)强调等底等高的平行四边形面积相等。

  3、判断。我们开始演示的活动长方形支架的面积和由它变成的平行四边形的面积相等吗?为什么?

  四、全课总结。

  这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积是怎样推导出来的?

  五、布置作业

  练习十七第2、3题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=a×h

  S=a·h或S=ah

  点评:该课整个过程从动手操作→观察思考→归纳慨括,遵循了概念教学的原则和学生的认识规律。通过操作演示再现已有的表象,又借助已有的知识经验,通过观察、分析、比较、推理、概括出平行四边形的面积公式,教师适当点拨,使学生的思维始终处于积极状态,成为学习的主人。

《平行四边形的面积》教案6

  教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。

  教学目标:

  1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应

  用公式正确计算平行四边形的面积。

  2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。

  3.情感目标:培养空间观念,发展初步的推理能力。

  教学过程:

  一、复习导入。

  1.说出下面每个图形的名称。(电脑出示)

  2.在这几个图形中,你会求哪些图形的面积呢?

  3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题)

  二、探究新知。

  1.教学例1。

  (1)出示例l中的第一组图形。

  提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。

  对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的图形进行比较。

  (2)出示例l中的第二组图形。

  提出要求:你能用刚才的方法比较这两个图形的大小吗?

  学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。

  (3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。

  2.教学例2。

  (1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况。

  提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程)

  提问:有没有不同的剪、拼方法? (继续请学生演示)

  教师用课件演示各种转化方法,进行小结。

  (4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开?

  启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。

  (5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。

  3.教学例3。

  (1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系?

  (2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:

  转化成的长方形 平行四边形

  长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡)

  (3)小组讨论:

  ①转化成的长方形与平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?

  ③根据,长方形的面积公式,怎样求平行四边形的面积?

  (4)反馈、交流,抽象出面积公式。

  根据学生的讨论进行如.下的板书:

  因为 长方形的面积二长×宽

  所以 平行四边形的面积二底×高

  (5)用字母表示公式。

  如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?

  结合学生的回答,板书:

  S=ah

  (6)指导完成“试一试”。

  先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。

  三、巩固深化。

  1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。

  2.指导完成练习二第1题。

  (1)明确要求,鼓励学生尝试操作。

  (2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的'底和高可以分别是多少?

  (3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。

  3.指导完成练习二第2题。

  先让学生指出每个平行四边形的底和高,再让学生各自测量计算。

  提醒学生:测量的结果取整厘米数。

  4.指导完成练习二第3、4两题。

  先让学生独立解答,再通过交流说说自己解决问题的思路。

  5.指导完成练习二第5题。

  (1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。

  (2)指导观察、思考。

  要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢?

  (3)指导测量、计算,验证猜想。

  (4)连续拉动长方形,启发思考面积的变化有什么特点。

  四、全课小结。

  通过今天的学习活动,你学会了什么?有哪些收获?

  教学后记

  通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。

《平行四边形的面积》教案7

  教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感

  教学重点:

  让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。

  教学难点:

  让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。

  教学准备:

  平行四边形卡片、剪刀、三角板

  教学过程:

  一、课前复习,回顾旧知

  1、 长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习平行四边形面积公式做铺垫)

  2、 生:长方形面积=长×宽。

  二、提出问题,导入新课

  1、出示主题图:(看课本第86页的图)

  (1)、发现了哪些图形?你会求哪些图形的面积?

  (2)、故事引入

  学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。

  师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)

  比较方法:

  1、叠起来比;(比不了,形状不一样)

  2、数方格比。

  师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的面积的计算方法。(板书课题)

  三、探索发现、推导公式

  1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;两条边)

  2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。

  课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)

  现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。

  小组根据导学提纲进行合作学习

  (1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)

  (2)讨论:平行四边形转化成长方形后面积变了吗?

  (3)讨论:转化成的长方形的长和平行四边形的底是否相等?

  (4)讨论:转化成的长方形的宽和平行四边形的高是否相等?

  3、学生操作验证

  师:这个剪拼的任务就交给你们了。

  4、交流汇报

  (1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。

  生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。

  师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。

  (2)面积没变,只是形状变了。

  (3)长方形的长和平行四边形的底相等。

  (4)长方形的宽和平行四边形的高相等。

  (5)平行四边形的面积怎样算?

  5、集体推导

  齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)

  一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的`宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。

  板书:长方形的面积 = 长 X 宽

  ↓ ↓ ↓

  平行四边形的面积 = 底 X 高

  6、字母表示公式

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)

  7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。

  师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。

  8、运用公式:学习88页例1

  师:让我们回到学校门前的花坛吧。

  出示题目,学生读题,学生口答,老师板书过程。

  9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。

  三、巩固拓展

  1、课本89:第1题。(学生在练习本中解答)

  2、口答:下面的平行四边形的面积是多少平方厘米?

  3、选择题:(区分对应的底和高)

  4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。

  5、口答

  (1)平行四边形的底不变,高扩大2倍,面积就( )。

  (2)平行四边形的高不变,底缩小2倍,面积就( )。

  (3)平行四边形的底扩大2倍,高也扩大2倍,面积( )。

  四、总结全课,提高认识

  1、通过今天的学习,你有那些收获?还有那些遗憾的地方?

  2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。

  板书设计:

  平行四边形的面积

  长方形的面积 = 长×宽

  ↓ ↓ ↓

  平行四边形的面积= 底×高

  S = a×h

《平行四边形的面积》教案8

  【教材分析】

  本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

  【教学目标】

  知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

  情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

  【学情分析】

  平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

  【教学过程】

  一、创设情境,引入课题。

  1、游戏:小小魔术师。教师出示不规则图形。

  (1)师:你能直接计算出这个图形的面积吗?

  (2)师:你能计算出这个图形的面积吗?说一说用什么方法?

  (3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

  2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

  (设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

  二、激趣引思,导入新课。

  师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

  生1:我想知道要花多少钱才可以做成。

  生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

  生3:我想知道这块胶合板的面积有多大。

  师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)

  (设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

  三、动手操作,探究发现。

  1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

  师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

  教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

  (1)这个平行四边形的面积是多少平方厘米?

  (2)它的底是多少厘米?

  (3)它的高是多少厘米?

  (4)这个平行四边形的面积跟它的高与底有什么关系?

  (5)请同学们猜一猜:怎样计算平行四边形的面积?

  2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

  我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

  生:不方便。

  师:既然不方便,我们能不能用更方便的方法来解决呢?

  小组交流,学生讨论,发表意见。

  生:用剪和拼的方法。

  师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

  师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

  师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

  师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

  (生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

  师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

  师:再请一个同学展示一下,他的剪法有什么不一样吗?

  (生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

  师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

  小组讨论:

  ⑴原来平行四边形的面积和拼成的长方形的面积相等吗?

  ⑵原来平行四边形的底与拼成的长方形的长有什么关系?

  ⑶原来平行四边形的高与拼成的长方形的宽有什么关系?

  师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)

  师:长方形的面积=长×宽,那么平行四边形的面积怎样求?

  生:平行四边形的面积=底×高(板书)

  师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)

  教师小结方法指名让生叙述。

  师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

  师:现在我们可以确定当初的猜想谁是正确的?

  (设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

  四、实践应用,巩固提高。

  师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

  教师板书:5×4=20(平方米)

  出示例1 (同桌讨论,独立完成,最后全班交流。)

  教师板书:S=ah=6×4=24(平方米)

  师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

  (设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

  五、分层练习,强化应用。

  1、填空。

  (1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

  (2)0.85公顷=( )平方0.56平方千米=( )公顷

  2、计算下面各个平行四边形的面积。

  (1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

  3、解决问题。

  (1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

  (2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

  (设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

  六、总结升华,拓展延伸。

  1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

  (设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

  2、课后练习

  (1)、练习十五第1题,第2题。(任选一题)

  (2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

  平行四边形的面积练习题

  1、填一填

  (1)1平方米=( )平方分米=( )平方厘米

  (2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积( )。

  转化后长方形的长与平行四边形的( )相等,宽与平行四边形的( )相等。

  (3)平行四边形的面积=( )×( ),字母公式为( )

  (4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是( )

  (5)等底等高的两个平行四边形的面积( )

  2、判断

  (1)形状不同的两个平行四边形面积一定不相等( )

  (2)周长相等的两个平行四边形面积一定相等( )

  (3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积( )

  3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?

  24厘米

  50厘米

  升级跷跷板

  4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?

  5、一快平行四边形的菜地,底是36米,高是25米,每平方米收白菜8千克,这块地共收白菜多少千克?

  6、一个平行四边形的果园,底是30米,高是15米,中了90棵梨树,平均每棵梨树占地多少平方米?

  智慧摩天轮

  7、已知下图中正方形的周长是36厘米,求平行四边形的面积。

  8、一块平行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?

  平行四边形的面积教案设计

  【教材分析】

  本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。

  (教学目标)

  知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。

  过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。

  情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。

  【学习情况分析】

  平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积的计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。

  (教学过程)

  首先,创建情景并引入主题。

  1.游戏介绍:小魔术师。老师展示不规则的图形。

  老师:你能直接算出这个图形的面积吗?

  老师:你能算出这个图形的面积吗?告诉我怎么用它?

  老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?

  2. 小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)

  (设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道

  平行四边形的面积教案设计

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ②填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( )和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

  平行四边形的面积教案设计

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

  平行四边形的面积教案设计

  平行四边形的面积计划学时1

  学习内容分析

  学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究平行四边形的面积,计算平行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。

  学习者分析

  根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,

  教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握平行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。

  2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  过程和方法:合作学习,自主探索

  情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  知识点学习水平媒体内容与形式使用方式使用效果

  平行四边形面积的计算还未学平行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示平行四边形与长方形的转换过程在ppt展示平行四边形与长方形的转换过程使得同学更形象生动了解长方形和平行四边形之间的转换,有利于同学推导出平行四边形的'面积公式

  课后练习同学们已经学习了平行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解平行四边形公式,有利于同学的学习

  教学过程

  教学环节教学内容所用时间教师活动学生活动设计意图

  展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为平行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出平行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫

  让同学们通过已经学习的知识计算平行四边形的面积

  同学们通过已经学习的知识计算平行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出平行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。

  通过ppt的转换总结得出平行四边形面积公式平行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换平行四边形展示出来引导同学说出平行四边形的面积对刚刚的学习进行总结,得出平行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍平行四边形的"高"和"底".让学生体验将平行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣

  对平行四边形公式进行巩固练习同学已经学平行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心

  课堂教学流程图

  教学过程

  一、情境创设,揭示课题

  师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?

  生:平行四边形

  师:对了,就是平行四边形,你们在这个过程中什么改变了什么没有发生改变呢?

  生:形状,角度,面积

  师:那面积是变大还是变小

  生:此时回答不一

  教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,平行四边形的面积。(板书)

  二、创设问题情景,引发自主探索.

  1、提出问题,鼓励猜测

  那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

  2、自主探究、验证猜测:

  师:用剪刀把平行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?

  3、展示成果,互相交流

  同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和平行四边形的面积关系

  指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。

  方法二:转化法

  师:有什么发现?

  师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?

  生:长方形的长等于平行四边形的底、宽等于平行四边形的高

  师:是这样吗?师课件演示解说强调平移

  师:还有其他的剪拼方法吗?

  4、整理结论

  师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的平行四边形之间,你发现了什么?

  提问:(1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  师:你们觉得这几种方法有没有共同之处?

  (都是沿高剪开的,都是把平行四边形转化成长方形)

  课件演示,结合课件填写各部分间的相等关系。

  板书:底=长高=宽长方形的面积=正方形的面积

  师:我们一起读一下我们发现的结论。

  师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。

  师:你学到了些什么?

  师:如果用表示S平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:S=ah

  三、方法应用

  师:现在我们来算一下这块平行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

  师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

  师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是平方厘米呀?

  四、梳理知识,总结升华

  师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?

  五、课堂检测

  修改建议

  结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。

《平行四边形的面积》教案9

  设计理念:

  教学中以学生为主,放手让学生亲身体验,把充足的时间让给学生思考操作探究。本课的关键是让学生理解掌握平行四边形面积公式。因此在教学中让学生通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟获得数学的思想方法。让学生形成图形转化思维能力。并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

  设计意图:

  1、课堂导入:提出问题,激发学生的探究欲望。复习长方形的面积和平行四边形的有关知识,利用旧知为新知作铺垫。再开门见山地抛出问题:平行四边形的面积,你们会求吗?这样过渡衔接自然。

  2、自学课本:让学生自学课本80页内容,教师提出要求,不足一格的算半格。让学生数方格,让学生参与学习,发现其规律。形成了自主学习的好习惯。

  3、合作探究:重视操作试验,发展合作能力。本节课教学我充分让学生合作参与学习,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  4、优化练习:练习设计的优化是优化教学过程的一个重要方面。设计的练习有坡度又注重变式。拓展了学生的思维能力。使学生感到数学与生活的联系,培养学生的数学应用意识,体验数学的应用价值。

  总之,我设计的这一课是一堂快乐的课,是一堂健康的课,真正体现了以学生为主,让学生学有所获,而且真正让学生由“让我学”变为了主动的“我要学”的愉悦心境。

  教学目标:

  1、知识与技能:

  (1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能应用公式正确计算平行四边形的面积。

  (2)以应用平行四边形的面积计算公式解决相应的实际问题。

  2、过程与方法:

  使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等数学活动过程、体会“等积变形”的思想方法,培养空间观念,发展初步的推理能力。

  3、情感态度与价值观:

  (1)渗透转化的数学思想方法。

  (2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  教学重点:

  探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:

  平行四边形面积公式的推导方法—转化与等积变形。并能正确应用平行四边形的面积计算公式解决相应的实际问题。

  教学过程:

  一、巧设情境,铺垫导入。

  师:同学们好!(出示教具,这是一个长方形框架)。它是什么图形?

  师:同学们异口同声的回答真让教师高兴。

  师:它的面积是怎样计算的?

  师:你的记性可真好,回答的很棒!(根据学生的回答,教师适时板书:长方形的面积=长×宽)

  师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示)同学们看看,现在变成了什么图形?(平行四边形)

  师:对了,你们观察真仔细。

  师:你认为平行四边形的面积是怎样计算的?这节课就让我们就一起来探讨平行四边形面积计算吧。(板书课题:平行四边形的面积)

  二、自学课本,发现规律。

  (课件出示情境图。)

  师:请同学们看大屏幕,根据图中的情境,你能提出哪些数学问题?

  师:大家提出的问题都很好。你认为哪个花坛大呢?如何比较它们的大小呢?

  师:9号同学你这么快想到了,你很聪明,请坐。

  师:其实人们早就学会了用数方格的方法来验证花坛的面积大小。

  师:(大屏幕出示自学指导)请同学们看自学指导:一个方格表示1平方米,不满一格的按半格计算。

  师:请你们根据自学指导的要求自己认真数一数,并把你的结论填在表中。

  师:同学们数的真仔细,请4号、17号、30号同学把你们填好的表格贴在黑板上给大家展示一下。

  师:大家填写的表格和老师填写的是一样的吗?请看大屏幕,是这样填写的请举手,好,同学们填得很正确。(课件出示表格)

  师:请你们仔细观察,从这个表中发现了什么?谁来说一说?

  师:大家的发现和老师的发现是一样的,你们真厉害呀!

  师:刚才我们用数方格的方法数出了平行四边形的面积,如果有一个平行四边形有操场这么大,用数方格的方法好不好呢?

  师:请同学们想一想,太麻烦而且得到的数据也不准确,

  师:平行四边形的面积计算还有没有更好的方法吗?谁猜一猜。

  师:提出猜想:平行四边形的面积等于底乘高,平行四边形的面积等于相邻两条边的乘积。那谁说的对呢?下面我们还是动手操作实验来揭晓答案吧。

  三、合作探究,迁移创造。

  师:请同学们以小组合作学习的'形式剪一剪,拼一拼,将你们手中的平行四边形转化为我们学过的图形,看哪个小组拼的快。

  师:各小组展示你们拼出的图形。(学生演示:这是第一小组的拼法,这是第四小组的拼法很特别唷。)第四小组讲一下你们的拼法。

  师:老师很佩服你们的钻研劲儿!希望继续努力!

  师:下面我以第一小组的拼法为例,再一次演示一下平行四边形与长方形的关系。请第一小组派代表来作解说。(师课件演示剪拼过程,学生说过程。)(4号同学说:这是平行四边形的高,这是它的底,我们沿着平行四边形的高剪开,把剪下来的直角三角形平移到四边形的右侧,这样平行四边形就转换成了长方

  形。平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等.,因为长方形的面积是长乘宽,所以平行四边形的面积是底乘高,用底乘邻边来求面积是错误的。)

  师:你说得可真好,都可以做小老师了,大家掌声鼓励一下。

  师:好,现在老师把4号同学说的用板书的形式体现出来。(师板书)请同学齐读平行四边形面积公式。

  师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那平行四边形面积的字母公式该怎样写?请同学们跟老师一起读字母公式。

  师:这里老师要强调一点,就是求平行四边形面积时一定要把它的底和底相对应的高相乘,记住了吗?

  师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,高80m,这块地有多少公顷?在这块地里共收小麦7680千克,平均每公顷收小麦多少千克?

  8、一平行四边形的一条底边长18厘米,这条底边上的高是20厘米,另一条底边是15厘米,求这个底上的高是多少厘米?

《平行四边形的面积》教案10

  教学目标:

  1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

  教学重点:

  探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:

  平行四边形面积公式的推导方法――转化与等积变形。

  教学方法:

  利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

  教具、学具准备:

  多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

  教学过程:

  一、情境激趣

  二、自主探究

  古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的'地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?

  在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?

  1、数方格,比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

  (学生:麻烦,有局限性。)

  (5)观察表格,你发现了什么?

  出示表格平行四边形底底边上的高面积

  长方形长宽面积

  (6)引导学生交流自己的发现。

  反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?

  2、动手操作,验证猜想。

  (1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

  (2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)

  (3)观察并思考:

  ①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  ②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (5)交流反馈,引导学生得出结论

  ①形状变了,面积没变。

  ②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  观察面积公式,要求平行四边形的面积必须知道哪两个条件?

  (平行四边形的底和高)

  (7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?

  (转化图形的形状)

  (8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3、运用公式,解决问题。

  (1)出示例1

  例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?

  (2)学生独立完成并反馈答案。

  三、看书释疑P79~81

  四、巩固运用

  1、判断,平行四边形面积的概念。

  (1)、两个平行四边形的高相等,它们的面积就相等( )

  (2)、平行四边形的高不变,底越长,它的面积就越大( ) 。

  (3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。

  2、计算,平行四边形的面积。

  3、拓展1,你有几种方法求下面图形的面积?

  4、拓展2 比较,等底等高的平行四边形的面积。

  五、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

《平行四边形的面积》教案11

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

  二、导入新课

  根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  三、讲授新课

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  :如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的.长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的“填空”。

  7、验证公式

  学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  (四)应用

  1、学生自学例1后,教师根据学生提出的问题讲解。

  3、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  4、做书上82页2题。

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业

  练习十五第1题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽 平行四边形的面积=底×高

  S=a×hS=ah或S=ah

  课后反思:

《平行四边形的面积》教案12

  一、谈话导入

  1、组织课堂纪律

  2、比眼力游戏:哪个图形面积大

  学生1、

  学生2、

  学生3、

  学生4.、

  师演示,全体同学看

  3、小结:转化法:拼、补

  二、用上面的方法学习新知识

  1、停车位。哪个大?学生1、学生2、学生3、引导学生说出要算面积,才知道哪个大。

  2、揭示课题,板书

  1、长方形的面积只要量出什么就可以算出来?

  2、猜想平行四边形的面积要量出什么?

  学生1:底、高

  学生2:邻角(边)

  豆豆猜想:邻边x邻边=平行四边形面积

  3、课件演示:平行四边形变化

  引导学生说:面积越来越小,邻边不变。说明:面积与邻边有什么关系:(排除第二种猜想)

  4、学生操作:(1个同学数,1个同学填表格)

  (1)用数表格方法求平行四边形的面积

  学生1、平行四边形面积=底x高

  (2)挑战:没有方格怎样验证底x高=平行四边形面积

  学生忙着量、师及时提示,转化。

  学生2/、演示、解说

  问题:从哪里剪,还可以从哪里

  师演示,学生观察,什么变了,什么不变,变成了什么?有什么关系?

  长方形面积=长x高

  平行四边形=底x高

  S=axh

  (3)解决停车位问题

  1、要测量长和宽(长方形)底和高(平行四边形)

  2学生算

  学生1:(及时表扬)

  三、出示

  1、学生1:15x812x8

  2、为什么12cm也是底,12x8不对?

  3、对应的高

  (5)、小小设计师

  1、在小方格纸里画出一个12平方cm的平行四边形

  2、学生展示,说说画得的原因与大家分享。

  学生2、

  (3)扩展延伸,底是2cm,高是6cm可以画多少种?(无数种)它的`底都2cm高都是6cm.说明面积怎样。

  四、总结:

  学生总结,今天这节课你学习有什么收获。

  评析:刘老师通过引导学生比较不规则图形,分别让学生1、学生2、学生3、学生4、说并说理由,顺势引出转化法,并让转化贯穿于整节课,参透转化思想,这是空间与图形学习的重要而常用的方法。

  通过让学生比较长方形与平行四边形停车位哪个大?来让学生产生需要求图形面积的需求,顺势引出平行四边形的面积一、计算,揭示课题。要算长方形的面积只要量出长和宽就可算出来,进而让学生猜想平行四边形的面积计算要量出什么?与什么有联系?引导学生积极猜想,学生1、量出底和高,就可以算出面积,学生2、学生3说量出两条邻边就可以算出来,针对以上两种猜测,教师课件演示平行四边形四边不变,高矮变化的情况,让学生仔细观察,讨论:平行四边形的什么变了,什么不变,说明面积与什么没有关系。排除第2种猜想,重点探究底1种猜想接着让学生用数表格的方法求平行四边形的面积并填写观察表内数据找出规律。学生1、学生2、说平行四边形面积=底x高,进而引导学生验证。让学生操作,经历平行四边形转化为长方形的过程。一开始,学生忙着量,教师及时提示,学生马上明白,通过操作转化为另一种已学过的图形。学生1、学生2、上台演示解说过程。紧接着,师问:从哪里剪?还可以从哪里剪?引导学生悟出平行四边形有无数条高,从哪条高剪都可以。课件演示让学生观察,转化过程中,什么变了,什么不变,变成了什么,有什么联系,让学生看清楚平行四边形变成长方形,面积不变,长方形的长和宽相当于平行四边形的底和高。使学生经历平行四边形转化为长方形的具体过程。学生掌握平行四边形的面积,计算公式水到渠成,用字母s=ah表示。经历知识形成过程是新课标强调的内容。在这个过程,转化的方法和思想赶着重要作用。

  练习环节,循序渐进,第1题强调平行四边形面积时,要找到对应的底和高。第2题小小设计师,开放题,学生通过努力细心观察可以完成得很好。

  这节课你有什么收获,让学生自己总结,改变了以往教师小结的习惯。

  建议:在剪三前,要让学生找出平行四边形的高,沿着高剪。找不到高,转化为长方形难以操作。如:引导学生悟出无数条高,许多学生还需要时间和空间。

  值得借鉴之处:

  1、让学生动手操作,经历知识重要过程,体现注重过程的观点。如:1、用数表格的方法求平行四边形的面积,观察结果找规律,初次感知计算方法。

  2、验证计算方法,参透转化思想,空间与图形的探究和学习的重要方法是转化。为后面学习三角形、梯形面积计算奠定了基础。

  3、著于引导学生质疑,引发知识冲突,促使学生积极参与活动。如:要比较长方形与平行四边形车位哪个大?使学生产生求它们的面积需求。长方形学习过,可以求,那么平行四边形呢?进而让学生猜测。然后引导学生观察排除猜想。在转化过程中,引导学生观察比较,什么不变,什么变了,变成了什么,有什么联系。如:从哪里剪?还可以从哪里剪?

  4、课堂组织方式较好。

《平行四边形的面积》教案13

  一、所在班级情况,学生特点分析

  本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

  二、 教学内容分析

  平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

  三、 教学目标

  1、 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

  四、 教学难点分析

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

  教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

  五、 教学课时

  一课时。

  六、 教学过程

  (一)复习

  1、做一做,说一说。

  师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

  学生做 — 教师巡视 — 同桌互相评价 — 个别台前讲说。

  2、复习长方形面积计算公式

  我们学过长方形面积的计算公式,谁能说出长方形面积的计算

  公式?

  生:长方形面积=长×宽

  师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。

  (板书课题)

  (二)推导平行四边形的面积公式

  1、数方格法:

  师:这儿有两个图形,请同学们比较它们的大小。

  出示课件(图1):

  要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。

  教学活动:

  (1)数出平行四边形和长方形的面积各是多少?

  (2)平行四边形的底和高各是多少?

  (3)长方形的长和宽各是多少?

  (4)通过数方格,你发现了什么?

  (平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)

  上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求

  的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?

  2、割补法:

  (1)学生用学具演示。

  师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?

  教学活动:

  学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。

  (2)教师用教具演示。

  同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?

  出示课件(图2)。

  教学活动:

  在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的`原则,激发学生的学习积极性。

  3、推导、归纳平行四边形的面积计算公式:

  把一个平行四边形转化成一个长方形,什么变了,什么没变?

  (形状变了,面积没有变。)

  也就是说拼成后长方形的面积和原平行四边形的面积相等。

  拼成后的长方形的长与平行四边形的底有什么关系?(相等)

  长方形的宽和原平行四边形的高有什么关系?(相等)

  在问答过程中,出示课件(图3)。

  师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)

  板书:平行四边形的面积=底×高

  请看课件(图4):

  如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?

  学生口述,教师板书:

  S=a×h

  师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:

  S=a·h

  也可以把乘号省略不写,板书:

  S=ah

  学习活动:

  将上面公式请同桌同学互相说说。

  (通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)

  要计算平行四边形的面积,必须知道几个条件,是什么?

  (两个条件,底和高。)

  七、课堂练习

  1、运用公式,尝试学习。

  师:请同学们打开课本24页,看“试一试”题目:

  出示课件(图5)。

  (在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)

  2、巩固练习,拓展学习。

  (1)选择正确的答案。

  出示课件(图6)。

  师:在上面A、 B、 C三个平行四边形中哪一个的面积是: 2×3=6(平方厘米),并说出理由。

  (A:错误,因为3和2是两条邻边,不是对应的底和高;

  (B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;

  (C:正确。

  (通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)

  3、操作观察,探究学习。

  出示课件(图7)。

  如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)

  (引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一

  定相等。)

  讨论:

  当两个平行四边形的面积相等时,它们的底与高是否也相等?

  (平行四边形的面积相等,底与高却不一定相等。)

  八、作业安排

  课本24页“练一练”,第3题、4题。

  九、附录(教学课件)

  十、教学反思

  平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

  课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。

《平行四边形的面积》教案14

  第6单元多边形的面积

  第1课时平行四边形的面积

  【教学内容】:教材P87~88例1及练习十九第1、2、3题。

  【教学目标】:

  知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

  过程与方法:通过剪、摆、拼等活动,让学生主动探究平行四边形的面积的计算公式。

  情感、态度与价值观:培养学生初步的空间观念,及积极参与、团结合作、主动探索的精神。

  【教学重、难点】

  重点:掌握平行四边形的面积公式的推导过程和平行四边形的面积的计算。

  难点:理解平行四边形的面积公式的推导过程。

  【教学方法】:迁移式、尝试、扶放式教学法

  【教学准备】:师:多媒体。生:剪刀、直尺、平行四边形纸片、练习本。

  【教学过程】

  一、情境导入

  1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(一个长方形,一个平行四边形。)

  2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。

  3.提问:你会算它们的面积吗?

  4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。

  (板书课题:平行四边形的面积)

  二、互动新授

  1.数方格,比较大小。

  想一想,我们可以用什么方法来计算平行四边形的面积呢?

  根据已有经验,学生会想到用数方格的方式得出平行四边形的面积。

  出示教材第87页方格图及平行四边形图。

  引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算,问这个平行四边形的面积是多少平方米?

  学生数完以后会得出:这个平行四边形的面积是24m2。

  继续出示教材第87页的长方形图,让学生数一数并算一算长方形的面积是多少。

  学生数完得出:长方形的长为6m,宽为4m,面积是24m2。

  引导学生完成教材87页的表格,并对填表的结果进行讨论:你发现了什么?

  通过比较、讨论,得出:两个图形的底与长,高与宽和面积分别相等。

  2.猜想验证。

  提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

  引导学生小结并质疑:计算平行四边形的面积用数格子的'方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?

  引导假设:是否可以把平行四边形变成一个长方形来计算出它的面积?

  操作验证:演示教材第88页平行四边形面积的推导过程,并让学生拿出自己的学具平行四边形纸片,像刚才演示的操作一样,同桌相互合作,动手进行剪、拼、移的操作方法,从中再次验证一下是否正确。

  师巡回指导学生的操作。

  引导学生思考:通过刚才的操作演示你发现了什么?

  学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

  引导学生利用长方形的面积公式推导出平行四边形的面积公式:

  平行四边形的面积=底×高

  追问:要求平行四边形的面积必须知道什么条件?

  学生得出结论:必须知道平行四边形的底和对应的高。

  3.全班交流,要求学生说出自己的推导过程。(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)

  4.教学用字母表示。

  如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成:S=ah(板书)

  5.应用面积计算公式计算平行四边形的面积。

  出示教材第88页例1。

  学生读题,理解题意,并独立完成;教师板书。

  三、巩固拓展

  完成教材第89页“练习十九”第2题。可先让学生试着做,再通过集体订正检查掌握情况。

  四、课堂小结

  师:这节课你学会了什么,有哪些收获?引导总结:把平行四边形转化成长方形可以推导出平行四边形的面积公式:平行四边形的面积=底×高

  五、作业:教材第89页练习十九第1、3题。

  【板书设计】:

  平行四边形的面积

  长方形的面积=长×宽例1 S =ah

  ↓ ↓ ↓ =6×4

  平行四边的面积=底×高=24(m2)

  ↓ ↓ ↓

  S=a × h

《平行四边形的面积》教案15

  教学目标

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点

  理解公式并正确计算平行四边形的面积.

  教学难点

  理解平行四边形面积公式的推导过程.

  教学过程

  复习引入

  (一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).

  (二)观察老师出示的几个平行四边形,指出它的底和高.

  (三)教师出示一个长方形和一个平行四边形.

  1.猜测:哪一个图形面积比较大?大多少平方厘米呢?

  2.要想我们准确的答案,就要用到今天所学的知识——“平行四边形面积的计算”

  板书课题:平行四边形面积的计算

  二、指导探究

  (一)数方格方法

  1.小组合作讨论:

  (1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?

  (2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?

  (3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)

  (4)比较平行四边形的`底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

  2.集体订正

  3.请同学评价一下用数方格的方法求平行四边形的面积.

  学生:麻烦,有局限性.

  (二)探索平行四边形面积的计算公式.

  1.教师谈话

  不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.

  2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

  3.学生到前面演示转化的方法.

  4.演示课件:平行四边形的面积

  5.组织学生讨论:

  (1)平行四边形和转化后的长方形有什么关系?

  (2)怎样计算平行四边形的面积?为什么?

  (3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?

  (三)应用

  例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)

  4.8×3.5≈17(平方米)

  答:它的面积约是17平方米.

  三、质疑小结

  今天你学到了哪些知识?怎样计算平行四边形面积?

  四、巩固练习

  (一)列式并计算面积

  1.底=8厘米,高=5厘米,

  2.底=10米,高=4米,

  3.底=20分米,高=7分米

  (二)说出下面每个平行四边形的底和高,计算它们的面积.

  (三)应用题

  有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)

  (四)量出你手里平行四边形学具的底和高,并计算出它的面积.

  教案点评:

  该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。

【《平行四边形的面积》教案】相关文章:

平行四边形的面积教案04-26

《平行四边形的面积》教案11-16

面积与面积单位教案05-31

平行四边形的面积教案15篇(推荐)06-13

面积的教案11-19

《面积》教案06-18

面积单位教案11-14

圆的面积教案08-04

《面积计算》教案06-14