人教版六年级上册数学教案
作为一名无私奉献的老师,就有可能用到教案,借助教案可以有效提升自己的教学能力。教案应该怎么写才好呢?以下是小编整理的人教版六年级上册数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
人教版六年级上册数学教案1
教学内容:
教材第14~15页例9及做一做,练习三第4~7题。
教学目标:
1、让学生在解决“求一个数的几分之几是多少”的分数乘法基本问题的基础上,尝试自己学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。初步构建分数乘法问题的知识结构。
2、培养学生的阅读理解分析能力,以及合作意识和相互沟通的能力。养成良好的解决问题的检验习惯。
【目标解析:“求比一个数多(或少)几分之几的数是多少”的分数乘法问题较复杂,是在解决“求一个数的几分之几是多少”这类分数乘法基本问题的基础上发展引申出来的,教师可以放手让学生在旧知识的基础上自主学习,大胆探究。】
教学重点:
让学生在解决简单的分数乘法问题的基础上,学会解决较复杂的“求比一个数多(或少)几分之几的数是多少”的分数乘法问题。
教学难点:
初步构建分数乘法问题的知识结构。
教学过程:
一、情境引入,阅读思考
(一)课件出示信息
人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75次,婴儿每分钟心跳的次数比青少年多。
(二)阅读信息,思考问题
1、请学生认真阅读信息,思考:根据这些信息你能提出哪些问题?
预设:
(1)婴儿每分钟心跳比青少年多多少次?
(2)婴儿每分钟心跳的次数是青少年的.几分之几?
(3)婴儿每分钟心跳多少次?
2、这些问题中,哪些你能解答出来?
对于前两个问题,学生根据自己学过的知识就能解答。解答完第一个问题时,说说怎样解决“求一个数的几分之几是多少”的问题。
【设计意图:一方面复习解决分数乘法基本问题的方法,对解决分数乘法问题中表示数量关系的句子进行深入理解,为后续学习做好准备;另一方面,让学生学会收集、选择和加工信息。】
二、由浅入深,探索新知
(一)改题
在课件上补充前述问题(3):“婴儿每分钟心跳多少次?”,呈现例9。
(二)探索解决稍复杂分数乘法问题的方法
1、认真阅读例9,理解题意。
阅读课本第14页例9及下面的“阅读与理解”和“分析与解答”的线段图,并思考:
(1)你从题目中读懂了什么?把“阅读与理解”栏目的内容填写完整。
(2)从“分析与解答”的线段图中你又读懂了什么?说说每一条线段的意义。
(3)你认为该怎样解决这个问题?尝试自己做一下。
2、同桌讨论。
(1)说说题意和图意。
(2)把你的解题思路说给同桌听。
3、集体讨论。
(1)说说你是怎样理解题意的?(可直接读题理解,也可通过线段图理解。对于遇到困难的同学,可以再次出示线段图辅助理解,尤其是对第二种解法的理解)。
(2)你是怎样解答的?说说解题思路。
(3)你能用自己的方法检验两位同学的解答是否正确吗?如果有困难可以提示一下(算算135次比75次多几分之几?)。
4、回顾小结。
你是通过哪些途径来理解题意的?(反复阅读,画线段图,找准表示单位“1”的量等,特别强调画线段图在理解题意中的作用。)
【设计意图:通过学生阅读例题、画线段图等活动培养学生的阅读能力和自主探究的能力。又通过讨论、小结,使每位同学都学有所得,同时培养学生的合作意识和沟通能力。】
三、课堂练习,强化新知
1、 P15做一做。反复阅读,仔细分析。独立完成后,同桌讨论解题思路和方法。
2、理解“分率句”专项训练:
(1)六(1)男生人数占全班人数的。
把看作单位“1”,是的,女生人数占全班人数的。
女生人数=全班人数× 。
(2)电视机的数量比洗衣机多。
电视机=洗衣机× 。
3、独立作业(部分可选作本节的课后作业)
(1)昆虫飞行时经常振动翅膀。蜜蜂每秒能振动翅膀236次,蝗虫每秒振动次数比蜜蜂少。蝗虫每秒能振动多少次?
先求什么?再求什么?你有几种解题方法?
(2)鸡的孵化期是21天,鸭的孵化期比鸡长。鸭的孵化期是多少天?
你能通过画线段图的方式分析题目的意思吗?
(3)严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中的泥沙沉积在河道中,其余被带到入海口。有多少亿吨泥沙被带到入海口?
跟同桌交流一下你的思考过程。
(4)磁悬浮列车运行速度可达到430千米/时,普通列车比它慢。普通列车的速度是多少?
同桌之间互相说说用不同方法解答的思考过程。
【设计意图:留给学生充分的练习时间,让学生进一步理解、巩固这节课所学知识。教师也可以在巡视过程中及时发现问题、解决问题。】
四、课堂小结,归纳提升
1、这节课我们学习了什么内容?
怎样解决求比一个数多(或少)几分之几的数是多少的问题。
2、它与前一节课所学的知识有什么共同之处和不同之处?
归纳得出:求一个数的几分之几是多少,都是用这个数去乘几分之几。这里的几分之几有时候可以直接从题目中获取,有时候要根据题意自己计算出来。
解法一:
A.确定单位“1”的量。
B.根据求一个数的几分之几是多少,先求出中间问题。
C.再计算题中所求的问题。
解法二:
A.确定单位“1”的量。
B.先求出所求问题相当于单位“1”的几分之几。
C.根据求一个数的几分之几是多少,求出答案。
【设计意图:此处的课堂总结有利于学生构建分数乘法问题的知识结构。】
五、互动游戏,适度拓展
师:这堂课同学们都学得很好,现在还有时间,为了奖励大家,我们一起来做一个游戏。
我这里有2个盒子和30个乒乓球。现在老师拿几个乒乓球放到一个盒子中,但是不给你们看到底拿了多少个,看哪位同学猜得准。
师:我只告诉你们一个条件:“1号盒子里乒乓球的个数是总个数的。”你能说出1号盒子里有几个乒乓球吗?
师:如果1号盒子里乒乓球的个数是总个数的,你能说出2号盒子里现在有几个乒乓球吗?
师:你没有看见,怎么会知道另一个盒子里有25个乒乓球呢?
【设计意图:在课堂最后安排了有趣的数学游戏,使学生在轻松愉快的氛围中回顾分数乘法的学习内容。】
人教版六年级上册数学教案2
【教学内容】
圆的面积
【教学目标】
知识与技能:通过操作,使学生理解圆的面积公式推导过程,掌握求圆的面积的方法并能正确计算。
过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
情感、态度与价值观:培养学生的空间观念。
【教学重难点】
重点:
1、理解圆的面积公式的推导过程。
2、掌握圆的面积的计算公式,能够正确地计算圆的面积
难点:理解圆的面积公式的推导过程。
【导学过程】
【知识回顾】
1、还记得这些平面图形的面积计算公式吗?
2、平行四边形的面积公式推导过程还记得吗?
我们是通过剪拼的方法把它转化成长方形的。
【新知探究】
(一)、定义:
1、请你摸一摸哪里是圆的面积?
2、师:圆所占平面的大小就是圆的面积。
引导学生操作:
师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径)
生:(圆的大小由直径或半径决定。)沿直径或半径剪。
师剪第一刀,再问:第二刀怎么剪?
师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的.方便,我们把圆平均分成多份。
将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。
师:随着等分份数的不断增加,你有什么发现吗?
A:随着等分份数的不断增加,曲线越来越直。
B:随着等分份数的不断增加,每一小份越来越接近三角形。
(三)拼摆推导面积公式。
1、拼摆
师:把圆转化成什么图形?我们来试一试。
学生操作,演示学生的作品。
师:转化后的图形面积与圆的面积有什么关系?面积不变。
课件出示:把圆等分成不同等份时的图形的趋势。
2、推导面积公式
小组讨论:长方形各部份相当于圆的什么?
请你推导圆的面积公式。
学生汇报:(2~3名学生说,老师说,全班说推导过程)
(4)学生齐读圆面积公式(S=πr2)。并说说圆面积的大小与什么有关?(半径)给直径怎办?(先求出半径,再求面积)
【设计意图】在这个环节教师成为学生的学习伙伴,在教师的引导和启发中,让每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。创造一个和谐、高效的学习氛围。
【知识梳理】
本节课学习了什么知识?
【随堂练习】
1、根据下面所给的条件,求圆的面积。
(1)、半径2分米
(2)、直径10厘米
2、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?
3、判断对错:
(1)圆的半径越大,圆所占的面积也越大。()
(2)圆的半径扩大3倍,它的面积扩大6倍。()
人教版六年级上册数学教案3
【教学内容】
教材42——43页例7及练习九的5—9题
【教学目标】
知识与技能:使学生理解“工程问题”的特点、数量关系;掌握解题方法,并能正确解答。
过程与方法:培养学生观察、类推能力,初步的探究知识、合作解决问题的能力。
情感、态度与价值观:结合生活实际,让学生感受到数学的使用价值
【教学重难点】
重点:工程问题数量关系特征及解题方法。
难点:工作总量用单位“1”表示及工作效率所表示的含义。
一、复习
师:同学们,我们回忆一下,以前学过的做工问题涉及到哪三种量三种量?
生:工作总量、工作效率、工作时间。 师:那它们的关系又如何呢?
二、导入新课,揭示课题。 师:如果不给出具体的工作总量,该怎么解决呢?这就是我们今天要学习的工程问题。(师板书:工程问题)
【导学过程】
1、 出示例7。
2、一项工程,由甲工程队单独需12天完成,由乙工程队单独做需18天完成,两队合做需多少天完成?师:那怎样理解什么是独做?什么是合做?我们先来演示一下,我们就以同学的课桌的长度为一项工程,以笔的运作为工作效率,同桌分别扮演甲乙工程队,独做就是一个同学从左运作到右,另一个同学从右运作到左。合做就是两个同学相向运作,直到相遇表示这项工程完成了。同学们看看,完成一项工程是独做的快还是合做的`快?
3、师:同学们再动动脑筋,看哪个小组又对又快地讨论出下面的问题?(播放轻松的音乐,学生在音乐声中讨论。教师巡视,对个别组辅导)
学生以四人小组为单位进行讨论。(课件出示)
1)题目里没有具体的工作总量,可用什么来表示工作总量?
2)甲队每天完成工程的几分之分?
3)乙队每天完成工程的几分之几?
4)两队合做,每天完成工程的几分之几? 5)两队合做,需几天完成?
4、准备题:
修一段600米长的公路,甲工程队单独做20天完成,由乙工程队单独做30天完成,两队合作多少天完成?
师:谁能说说工程问题的特点是什么?
生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。
【随堂练习】
完成下面两题,要求先写出数量关系然后再解答。
1、一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的?
2、一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?(浙江温岭市)
3、一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3?
4、一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?
5、 修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?
练习九的6—9题。(请先画线段图分析题意,然后再解答。)
人教版六年级上册数学教案4
本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。
由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。
教材还编排了很多问题情境图来突破教学中的重难点问题。
例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。
这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)
第1课时比的意义
教材48~49页的内容。
1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
重点:
理解比的意义以及比与分数、除法之间的关系。
难点:
理解比与分数、除法之间的关系,明确比与比值的区别。
课件:
学具。
1.课件出示教材第48页情境图。
教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?
(1)长比宽多多少厘米?15-10;
(2)宽比长少多少厘米?15-10;
(3)长是宽的多少倍?15÷10;
(4)宽是长的几分之几?10÷15。
2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)
自学比的相关知识。
学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)
(1)比各部分的名称。
课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)
(2)比值的意义。
师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)
师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)
师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?
讨论后根据学生交流反馈填写下表:
联系
区别
除法
被除数÷除数=商
一种运算
分子—分母=分数值
比
前项:后项=比值
两个量的关系
请尝试用字母表示比和除法、分数之间的内在联系。
板书:a∶b=a÷b=(b≠0)。
师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。
师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)
1.教材第49页“做一做”第1题。
请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)
2.教材第49页“做一做”第2题。
学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)
3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。
说说这节课我们学习了什么?你有什么收获?
教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。
在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。
第2课时比的基本性质
教材第50~51页的内容。
1.理解和掌握比的基本性质,初步掌握化简比的方法。
2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
重点:
理解比的基本性质。
难点:
正确应用比的基本性质化简比。
课件、答题纸、实物投影。
师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?
板书:比的基本性质。
学生纷纷猜想比的基本性质。
根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
1.教学比的基本性质。
师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)
(4)全班验证。
2.完善归纳,概括出比的基本性质。
10∶15=10÷15==
15∶9=15÷9=
16∶20=(16
○
□)∶(20
○
□)
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善并板书。
(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。
3.深化认识。
利用比的基本性质做出准确判断:
(1)8∶10=(8+10)∶(10+10)=18∶20( )
(2)12∶16=(12÷6)∶(16÷4)=2∶4( )
(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )
(4)比的前项乘3,要使比值不变,比的后项应除以3。
( )
4.比的基本性质的应用。
(1)引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
(2)从下列各比中找出最简整数比,并简述理由。
3∶4 18∶12 19∶10 ∶ 0.75∶2
(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))
学生独立尝试,化简后交流。
(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)
(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))
四人小组讨论研究,找到化简的方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
5.方法补充,区分化简比和求比值。
)
还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)
2.教材第53页“练习十一”第4题。学生口答完成。
这节课你有什么收获?还有什么疑问?
比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用
教材第54页的内容。
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
课件。
课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)
师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)
1.课件出示教材第54页例2。
师:题目中要配制什么?(配制500
mL的稀释液)
师:是按什么进行配制的?(浓缩液和水的.体积按1∶4的比进行配制)
师:“浓缩液和水的体积比是1∶4”是什么意思?
生:就是说在500
mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。
师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?
师:你能求出浓缩液和水的体积各是多少毫升吗?
引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。
思路一:先把比化成分数,用分数乘法来解答。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500×=100(mL)
水的体积:500×=400(mL)
思路二:把比看作分得的份数,先求一份数,再求几份数。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500÷5×1=100(mL)
水的体积:500÷5×4=400(mL)
2.验证所求问题。
方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。
方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。
3.明确按比例分配的意义。
在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)
4.整理解题思路。
(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)
(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。
1.教材第55页“练习十二”第1、2题。
第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。
2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。
3.教材第56页“练习十二”第11题。
注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。
今天这节课我们主要研究了什么?说说你的收获和感受。
本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
人教版六年级上册数学教案5
【教学内容】教材第41页例6。
【教学目标】
1.使学生在理解数量关系的基础上学会列方程解答稍复杂的分数应用题。
2.能运用方程方法解决实际生活中的问题。
3.培养学生的分析、判断和推理能力。
【教学重难点】
重、难点:分析数量关系,运用方程解决问题。
【教学过程】
一、复习准备
1.根据题意,看图写代数式。
苹果有akg,西瓜质量比苹果重。
西瓜重()kg。
2.根据信息,找出数量关系式。
(1)体积相等的.冰的质量比水的质量少。
(2)今年比去年增产。
(3)一条公路,已修了。
二、自主探究
1.创设情境,引出例6。
2.审题。
(1)看例题图,获取信息。
(2)反馈:说说已知的条件与要求的问题。
3.分析题意:说说你对“下半场得分只有上半场的一半”的理解。
(1)同桌讨论
(2)小组交流
(3)全班反馈
出示:下半场得分=上半场得分×或上半场得分=下半场得分×2。
下半场得分+上半场得分=全场得分。
4.尝试解答。(可提示:设什么为未知数的量,则另一个量怎么表示?)
说理由。展示两种不同解法,你更喜欢哪种解法?(只要理由充分都行)
5.回顾与反思:如何检验结果是否正确?(可算一下检验:下半场得分是否是上半场的一半?)
1.看图口头编应用题。
2.完成教材练习九第1题。(先说说对关键句的理解,能说出数量关系式吗?再尝试解答,反馈)
3.完成教材练习九第5题。(先说说对关键句的理解,再说出数量关系式,最后尝试解答,反馈)
四、课堂小结
今天我们研究了什么?解题时应注意什么?
解题的关键是什么?
五、课堂作业
教材练习九第2、3、4题。
人教版六年级上册数学教案6
20xx年人教版六年级数学上册教案姓名:沈金鹏
学号:134080303
院、系:数学学院
专业:数学与应用数学
20xx年1月22日
第二单元位置与方向
教学目标:
知识与技能:
1.通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。2.会看简单的路线图,能根据路线图说出行走的方向和路线。
过程与方法:
1.通过解决实际问题,体会确定位置在生活中的应用。
2.探索和发现确定位置的有效方法。
情感态°价值观:
1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2.培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重点:
通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。
教学难点:
在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。
课时安排:
六年级上册第二单元:位置与方向
第1课:位置与方向㈠
教学内容:教材第19、20页相关内容及练习题
知识与技能:
1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的
方法。
2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在
平面图上画出物体的具体位置。
过程与方法:通过小组合作交流探讨,掌握画图的方法。
情感态度价值观:
1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2.培养学生合作交流的能力以及学习数学的兴趣和自信心。
重点:能根据任意方向和距离确定物体的位置。
难点:根据描述标出物体在平面图上的具体位置。教学目标:教学重难点:
教学方法:合作交流、共同探讨
教师:多媒体课件,直尺、量角器等。教、学具准备:学生:直尺、量角器。
教学过程:
一、情景导入
1.交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2.导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。
[板书课题:位置与方向(一)]
【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的'学习兴趣,为教学的展开作铺垫。
二、探究新知
㈠教学题例1
1.投影出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)
2.交流确定台风中心具体位置的方法。
⑴让学生尝试说说台风中心的具体位置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
⑶小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具体位置吗?
引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。
3.组织计算。
师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市
呢?
学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1.投影出示例题2。
提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。
2.尝试画图。
⑴学生独立思考怎样标出B市、C市的具体位置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3.组织全班交流。
投影展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4.算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5.总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。
三、巩固练习
1.教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。
⑵组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2.教材第21页“做一做”。
⑴学生独立进行画图。
⑵投影展示,组织评议。
⑶交流画图的方法。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。
人教版六年级上册数学教案7
教学目标:
让幼儿感知图形,三角形,长方形,正方形,能够区分几何图形。创设愉悦的游戏情节,运用多种感观来调动幼儿思维,想象能力,发展幼儿观察能力。
激发幼儿探索的欲望。
活动方法:
以游戏为主、结合操作性、讲解演示法
活动准备:
几何几何图形若干
几何图形拼组成的图画
魔术箱(纸盒子)
小鸭、小猫、小兔子的教具
活动过程:
五官儿歌,集中幼儿注意力,培养幼儿学习习惯养成教育。
游戏:摸一摸“魔术箱”让幼儿认识四种几何图形。
摸一摸“魔术箱”:变出魔术箱,老师导入语:箱子里有很多有趣的东西。
念咒语解开箱子:魔术箱子东西多,让我先来摸一摸,摸出来看看是什么?
摸出来一本长方形的书:问是什么,是什么形状。找一找教室中哪些东西是长方形的。(启发幼儿说一说)。
游戏反复进行:
分别认识其他三种图形。
教师小结:
圆形:圆溜溜,没有角,滚来滚去真能跑
三角形:三条边,三个角,像座小山坐的.牢
长方形:对边一样长,四个角一样大,大大方方本事好
正方形:四条边一样长,四个角一样大,方方正正真有用
游戏“角色扮演”:展示四种图形宝宝。
图形宝宝想和幼儿交朋友(导入语)。
老师角色扮演:用图形宝宝遮住脸,问小朋友我是谁,我的特点?
依次同上考考幼儿加深认识四种图形。
游戏“谁得本领大“:拿出由圆形、三角形、正方形、长方形组成的图片,请幼儿找出其中的图形宝宝。
依次变出另外几幅图画,让幼儿分别找出各种图形。
游戏“找图形宝宝“:地上摆好四种图形宝宝。
老师示范:走、走、走,找个图形站站好。口令结束,找到口令中的图形站好。
学生游戏:边走边念,表现好的给予奖励。
结束部分:给每个幼儿发个图形,让孩子利用手中的图形绘制一副手添画。
人教版六年级上册数学教案8
一、教学目标:
1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。
2、使学生认识到圆是轴对称图形,且对称轴有无数条。
3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识
二、教学重点:
圆的对称轴
三、教学难点:
画对称轴的方法。
四、教学过程:
(一)观察以前认识对称图形
1、举例说出轴对称的物体。如:蝴蝶 、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?
2、观察、概括。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。
(二)教学认识圆的对称轴
1、出示例3: 你能分别画出下面两个圆的对称轴吗?你能画出几条?
2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?
3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的'对称轴。
(三)巩固练习
1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。
2、小结:对称轴两侧相对点到对称轴的距离相等。
3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。
4、下面的图形是轴对称图形吗?它们各有几条对称轴?
长方形 等边三角形 等腰三角形 正方形 圆 环形
(四)总结
今天我们学习了哪些知识?
(五)布置作业
练习十四第5—9题。
五、教学追记:
本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了课件与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己来讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。
人教版六年级上册数学教案9
教学内容:
教科书P39——40,练一练,练习八6——11
教材简析:
在三年级下册,学生已经学习了根据分数的意义,用整数乘、除法解决求一个数的几分之几是多少的实际问题。这里再次安排教学,一是让学生理解求一个数的几分之几是多少可以直接用乘法计算,从而扩展对分数乘法意义的理解,二是通过沟通两种方法之间的联系,促使学生加深对相关数量的理解,提高解决实际问题的能力。
教学目标:
1.使学生结合具体情境,学习用分数乘法解决“求一个数的几分之几是多少”的实际问题,完善对分数乘法意义的理解,提高正确计算相关分数乘法式题的能力。
2. 丰富对用分数表示的数量关系的认识,使学生经历解决实际问题的探索过程,进一步培养观察、比较、分析、推理的能力。
3.使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高数学学习的信心。
教学重点:
掌握求一个数的几分之几是多少,可以用乘法计算。
教学过程:
一、谈话激情,导入新课
谈话:昨天我们已经学习了求几个几分之几是多少的实际问题,掌握了分数与整数相乘的计算方法。今天,我们将继续学习有关整数与分数的计算方法,以及相关的简单的实际问题。
[设计意图:开门见山,让学生明确本节课的学习内容是上节课的延续,使学生在明确的学习目的指引下,迅速投入到新知识的学习中。]
二、合作探索,获取新知
(一)小黑板出示P40,练一练第1题的图
提出要求:涂色表示“12的”、“20的”,涂完后说说你是怎么想的?怎么列式计算?在小组内交流后组织全班交流。
在交流中使学生明确:涂色“12的”,就是把12个○看作单位“1”,平均分成3份,涂色表示出这样的1份,列式:12÷3=4;涂色 “20的”,就是把20个□看作单位“1”,平均分成5份,涂色这样的4份,列式20÷5×4=16
[设计意图:把练一练第一题提前作为学习新知的铺垫 ,旨在帮助学生唤醒已学过的求“一个数的几分之几是多少”的一般方法和分数乘法的意义。为学生学习新知识作好心理和知识上的准备。]
(二)例题教学,探索新知
谈话:刚才我们用之前学过的分数意义的知识,用整数的乘、除法解决了这两个问题,那么,像这样的有关分数的实际问题,是否有更简单的方法来解决呢?下面就让我们一起来研究。
1.出示例题及图,交流题目中告诉了我们哪些条件?
引导学生看图描述题中两个分数的具体含义。
(估计学生能够说明:把10朵绸花作为单位“1”,红花的朵数是10朵的,绿花的朵数是10朵的。)
[设计意图:看图说题意,可以帮助学生理清题目中相关数量之间的内在联系,有利于学生学习新的知识。]
2.探究解决问题的方法
问题⑴:红花有多少朵?
①通过前面的铺垫估计学生能很快列式10÷2=5(朵);
②教师说明:像这样求10朵的是多少的问题,还可以直接用乘法计算。列式10×= ( )
③引导学生比较这两种计算方法,有什么想法?
引导学生在比较中认识到:10朵的,就是把10朵花平均分成2份,求每份是多少;而计算10×,要先约分,也就是用10除以2,得出一份是多少。体会两种计算方法思路的一致性。
得出结论并板书:求一个数的几分之几是多少,可以用乘法计算。
问题⑵:绿花有多少朵?
师:你能用求红花朵数的方法,求出绿花的朵数吗?
(有了求红花朵数的经历,估计学生能很快地列式
①10÷5×2=4(朵)②10×=4(朵)。)
进一步引导学生比较这两种方法,体会它们之间内在的联系。
(估计学生通过问题⑴的比较,能够认识到绿花的朵数是10朵的,也就是把10朵花平均分成5份,绿花是其中的2份;计算10×,也要先约分,也就是先把10÷5,求出1份是多少,再乘2求出2份是多少。)
通过比较,再一次得出结论:求一个数的几分之几是多少,可以用乘法计算。
[设计意图:这部分的教学是本课的重难点,求红花和绿花的朵数,每个问题都用了两种方法解决,通过这两种方法的列式、计算与比较,得出“求一个数的几分之几是多少,可以用乘法计算。”的知识点,使学生的.数学思维得到了进一步的发展,同时培养了学生的分析、推理能力]
三、组织练习,巩固新知
1.完成P40,练一练
第1题:在导入时,学生已经通过涂色理解了题目的意义并用以前学过的方法解决了这一问题,此时再看这题,旨在用今天所学的知识解决这一问题,列式:12×、20×,并和同桌说说这样列式的理由。
第2题,通过填空,引导学生理解:求根(或根)长多少米,就是求这根钢管的(或)是多少,进一步得出结论:求一个数的几分之几,可以用乘法计算。
2. 完成练习八第6题
通过一组实际问题的比较,沟通分数乘法意义与整数乘法意义的内在联系。知道“求3瓶是多少毫升”就是求3个900毫升相加的和;求“瓶是多少毫升”,就是求900毫升的是多少;求小明喝了多少毫升,就是求900毫升的是多少。
3.完成练习八第7、第8题
学生独立完成后说说你是怎么想的?体会分数乘法的实际问题在生活的运用。
4.完成练习八第9题
学生独立读题后交流,明白题目意思,“估计这个月哪个城市空气质量达Ⅰ、Ⅱ级的天数最多”,可以直接比较分数的大小;“计算各有多少天”,是以这个月的总天数“30天”为单位“1”进行计算的,计算得出结果后,再与估计的结果进行比较,检验估计的准确性。
5.完成练习八,第10、第11题
通过读题、列式计算,使学生认识到“求一个数的几分之几与求一个数的几倍一样,都可以用乘法计算”。
[设计意图:通过一系列的练习,继续巩固“求一个数的几分之几,可以用乘法计算”的知识。让学生在解答问题的过程中,体会分数乘法与整数乘法的内在联系,感受分数乘法是整数乘法的进一步发展,帮助学生逐步形成完整的知识结构。]
四、全课总结
今天我们学了什么?你有什么收获?
[设计意图:通过简单的小结,帮助学生梳理本课所学知识点,有利于学生新知识的建构。]
[总评:本课教学以学生为主体,紧密联系学生生活实际,使学生经历了解决问题的探索过程,在观察、比较、分析、推理等数学活动中,积极主动的获取了新的知识,同时提高了学生应用数学的能力,感受数学知识和方法的应用价值,提高了学生数学学习的自信心。]
人教版六年级上册数学教案10
活动设想:
本活动取材来源于生活,以探索橘子的瓣数为主线展开活动。活动有两个环节,第一环节是幼儿探索用多种办法点数橘子的瓣数,然后把结果记录在统计表中。幼儿通过观察统计表,了解橘子的瓣数并不相同。第二环节是利用统计得出的数据,让幼儿猜测是大橘子瓣数多还是小橘子瓣数多,然后提供大、小橘子让幼儿验证。
活动目标:
1、探索橘子的大小与瓣数的多少是否有必然的联系;
2、能清楚地表达探索的过程与结果;
3、学习不受物体排列方式的影响计数,探索多种计数的方法;
4、尝试用数学的方法解决问题。
活动准备:
1、剥开的橘子人手一个、没剥开的橘子人手两个;
2、笔、记录纸、卡片等。
活动过程:
1、创设问题情境,引发幼儿思考与操作。
(1)幼儿想办法点数橘子的瓣数并进行记录。
师:我们班的小朋友都喜欢和大家分享东西,今天我们来分享橘子,分享之前老师要考验小朋友,如果你们挑战成功就可以分享橘子。挑战的问题是:如果你和大家分享一个橘子,每个人吃一瓣,可以有几个人吃到你的橘子,想一想可以用什么办法知道。
幼:数一数。
师:橘子是圆的又可以掰开,那可以怎样数呢?小朋友动脑筋想一想,可以跟旁边的小朋友商量,想好了拿一个橘子用你的办法试一试。数完了不仅要把数字记在心里,还要记在记录表上。
反思:用表来记录全班幼儿计数的结果。运用统计表既有利于引导幼儿总结规律,让幼儿的知识系统化,增进幼儿处理信息的方法和技能,也有利于幼儿之间的相互交流,同时还能够有效控制探究的方向,有助于探究目标的实现。教师提出的第一个问题是启发幼儿用数学的方法解决问题。第二个问题是提醒幼儿在数的时候要充分考虑橘子的特性。让幼儿与旁边的小朋友商量,主要是想让幼儿在操作前先进行理性的思考,避免活动中的盲目性?幼儿讨论激烈,纷纷把自己的想法告诉对方。
(2)幼儿交流数的结果和计数的方法。
师:刚才小朋友都数了橘子,谁愿意告诉大家你数的那个橘子有几瓣?可以分给几个人吃?你是怎样数的?
幼1:我数的橘子有9瓣,可以分给9个人吃,我把橘子掰成一瓣一瓣,然后数一数。
幼2:我数的橘子有10瓣,可以分给10个人吃,我是用手指按住一瓣,从这一瓣开始数,数到它旁边就停下来。
幼3:我数的橘子有12瓣,可以分给12个人吃,我的橘子有一瓣很小,我记住这一瓣的样子,然后从这一瓣开始数,数到它旁边就知道有几瓣。
幼4:我数的橘子有9瓣,可以分给9个人吃,我把橘子的一瓣抠个小洞、然后从这一瓣开始数,数到它旁边就不要数了,最后是数字几就是几瓣。
反思:
集中分享能为幼儿的相互学习提供机会。在分享中幼儿学习同伴解决问题的方法,学会运用多种办法、多角度解决问题。在交流中,幼儿用语言表达探索的过程与结果,体验探索的快乐。从幼儿的`表述中可以看出,幼儿能充分考虑橘子的特性,能用多种方法数橘子的瓣数。这说明幼儿在面临新的问题时,能运用原有的知识经验,灵活运用不同的思维方式和操作方法。
(3)幼儿通过观察统计表发现橘子瓣数的规律。师:你们仔细观察表格,看看能发现什么?
幼1:我发现有9瓣的橘子和10瓣的橘子一样多,都是4个:
幼2:有的橘子是9瓣,有的橘子是8瓣。
师:你的橘子有几瓣?
幼3:有12瓣。
师:我们一起来数一数,8瓣的橘子、9瓣的橘备赢几个?
幼儿统计和记数。
师:看一看,你还发现了什么?
幼4:我发现8瓣的橘子只有1个,12瓣的橘子最多,有9个。
幼5:一个橘子最多的有14瓣,一个橘子最少的有8瓣。
师:今天我们只有30个小朋友参加活动,一个人数一个橘子,我们一共数了多少个橘子?
幼:30个
师:建瓯有很多的橘子,那么多的橘子中,是不是一个橘子最多有14瓣,一个橘子最少有8瓣呢?
幼:不知道。
师:以后你们吃橘子前数一数,看看有没有新的发现。
本环节利用统计表,让幼儿发现橘子的瓣数不相同,初步知道橘子大约的瓣数。设计这一环节有两个目的:一是让幼儿在操作的基础上对事物现象的简单规律进行思考与提升,以获得思维的发展;二是为后面的探索活动提供条件。“建瓯有很多的橘子,那么多的橘子中,是不是一个橘子最多有14瓣,一个橘子最少有8瓣呢?以后你们吃橘子前数一数,看看有没有新的发现。”教师抛出这个问题主要是让幼儿知道并不是橘子最少只有8瓣,最多有14瓣。橘子到底有多少瓣,教师没有给予答案,而是提醒幼儿在生活中关注,为幼儿继续探索橘子的瓣数留下广阔的空间。
2、抛出新的问题,启发幼儿猜想与验证。
(1)幼儿猜想、验证大橘子瓣数多还是小橘子瓣数多。
师:你们猜猜,一个橘子只有8瓣,它是大橘子还是小橘子?为什么?
幼:是大橘子瓣数多,因为大橘子很大肯定瓣多,小橘子很小肯定瓣少。
师:你们都觉得是大橘子瓣数多,小橘子瓣数少,到底是不是这样呢?待会儿你们拿两个橘子数一数,然后记录在表我们一起来看记录表,左边第一列是一个大橘子、一个小橘子,第二列是猜一猜橘子有几瓣,第三列是数一数有几瓣。
利用统计表的数据引发幼儿探索橘子的大小是否与瓣数的多少有必然的联系,此环节采用猜想与验证的组织形式。猜想能让幼儿调动原有经验与面临的情况进行思维碰撞,训练了幼儿独立思维能力。猜想、验证符合大班幼儿学习特点,在猜想验证过程中幼儿处于积极、主动的学习状态中。
(2)幼儿交流猜想、验证的过程与结果。
师:你们猜猜大橘子有几辫,小橘子有几瓣,是大橘子瓣数多还是小橘子瓣数多?数完后看大橘子有几瓣,小橘子有几瓣,是否猜对了?
幼l:我猜大橘子12瓣,小橘子9瓣,大橘子瓣数更多,后来我数大橘子有13瓣,小橘子11瓣,大橘子瓣数更多,我猜对了。
幼2:我猜大橘子14瓣,小橘子10瓣大橘子瓣数更多,后来我数大橘子有10瓣小橘子14瓣,卜橘子瓣数更多,我猜错了。
幼3:我的大橘子很大,我猜大橘子有15瓣,小橘子比较小,我猜有9瓣,大橘子肯定比小橘子瓣数多,后来我数大橘子有14瓣,小橘子14瓣,大橘子和小橘子瓣数一样多,我猜错了。
此环节让幼儿交流猜想、验证的过程与结果。幼儿通过自己的验证,意识到自己原有的认识是不对的,通过此环节,让幼儿学习客观地看待问题,建构辩证的思维方式。
(3)利用探索的答案引发幼儿思考。
师:刚才,小朋友经过验证,得出三种答案:第一种是大橘子瓣数多,小橘子瓣数少;第二种是大橘子瓣数少,小橘子瓣数多;第三种是大橘子和小橘子的瓣数一样多。为什么会这样呢?这里肯定有秘密,你们想通过什么办法找到答案?
幼1:我问我爷爷,我爷爷是生物老师、他会知道。
幼2:我看百科全书。
幼3:我跟我爸爸上网查找答案。
教师归纳幼儿操作后的答案,利用三种不同的答案,引发幼儿继续探索,让幼儿关注橘子生长的条件。
人教版六年级上册数学教案11
教学内容:六年级上册P94--95
教学目标:
1.知识与技能目标:整理百分数的有关知识,理清百分数、小数、分数之间的关系,能正确运用百分数知识解答实际问题。
2.过程与方法目标:在解决问题的过程中,发展思维能力,感受数学的应用价值。
3.情感与态度目标:在分析、思考、交流中获得成功的体验,培养学习数学的积极情感。
教学重难点
1.进一步理解百分数的意义,掌握百分数的读法和写法。
2.进一步掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
教具准备:教学课件或小黑板、 “收获卡”卡纸。
教学过程:
一、创设情境,引入复习
出示一组练习题,学生独立完成。
3.2+1.68= 0.8×0.5= 14-7.4= 0.3÷1.5=
48×0.02= 4÷20= 11.2-9.8= 1.5×0.04=
43÷0.01= 0.8×125= 3.8﹪+4.2﹪= 80﹪-30.6﹪
集体订正,让学生算一算自己做题的正确率。
学生汇报:90﹪、100﹪、86﹪、98﹪……。
利用学生做题的正确率引入新课,这节课就一起来复习有关百分数的知识,(板书课题)
二、回顾整理,建构网络
(一)自主梳理师:经过这段时间的学习,我们对百分数已经不再陌生,现在就请同学们回忆一下这单元我们都学了哪些有关百分数的知识,并用你喜欢的方式整理在“收获卡”上。
(二)展示成果:谁愿意把自己整理的知识网络图给大家展示展示?
(三)交流矫正,优化再建
意义(读法、写法)
百分数与小数、分数的互化
百分数
百分数的应用
三、重点复习,强化提高
(一)基本练习
1、某农场去年产小麦20吨,今年增产二成,今年产小麦多少千克?
2、一种商品,先提价20%,再降价20%后,现价和原价相等吗?为什么?
3、某种商品,原定价为20元,甲、乙、丙、丁三个商店以不同的销售方促销。
甲店:打九折出售。
乙店:降价9%出售。
丙店:买够百元打八折。
(1)明明买一件商品花了18.2元,他是在()商店买的。
(2)兰兰买了10件这种商品用了160元,小兰是在()商店买的。
(3)如果买的多,到()商店去买最便宜。
引导学生进一步巩固百分数的`意义。
小组交流:
(1)百分数、分数在意义上有什么不同?
(2)在实际应用中,什么情况下最多能达到100%?什么情况下达不到100%?什么情况下超过能100%?
(二)百分数、分数、小数的互化完成教材“整理和复习”第2题
师生共同回忆转化方法,结合具体数据进行巩固。
(三)求一个数是(比)另一个数的(多几或少几)百分之几
1. .你还知道哪些常用的百分率?这些百分率表示什么意义?
李师傅某天生产的零件经过检验合格率100%。他这一天生产的产品中有不合格的吗?他生产的产品合格率还能提高吗?
2、练习:
①一批产品共200个,经检测有196个合格,求这批产品的合格率。
②一批产品共200个,经检测有4个不合格,求这批产品的合格率。
③一批产品进行抽样检测,经检测有196个合格,4个不合格,求这批产品的合格率。学生解答后对比:这三题有什么共同的地方?为什么第1题可以直接计算,而后面的题目不行?
四、自主检评,完善提高。
这节课复习了哪些知识?一起来谈谈你的收获吧?
利用基础训练进行检评。
人教版六年级上册数学教案12
设计思路:
认识10以内的单双数是大班幼儿学习的内容,根据传统的教学方法既枯燥又没有真正的理解单双数的实际意义。《纲要》中体现出来的数学教育的新目标和教育价值,要求我们教师转变教育观念,在生活和和游戏的真实情景和解决问题的过程中逐渐形成幼儿的数学感和数学意识,因此,我通过创设2元超市的情境,让幼儿在富有生活气息的超市中感知理解单双数的概念,在操作中区分10以内的.单双数。在整个教学活动中,教师与幼儿之间、幼儿相互之间以及幼儿与材料之间,不断地进行着交流、对话,引导幼儿感受和体验事物的数量关系,帮助他们整理、归纳所获得的单双数学习经验。
活动目标:
1、通过创设情境、游戏化的教学,让幼儿在操作中理解并区分10以内的单双数;
2、培养幼儿从身边事物中发现单双数的能力;
3、激发幼儿对单双数的兴趣,能积极主动地参与数学活动。
活动准备:
2元超市场景、1——10的代用券,红色水彩笔每人一支、幼儿分组操作材料
活动过程:
一、情景导入,引起兴趣
瞧!我们已经来到了2元超市,你们来猜一猜,它为什么叫2元超市呢?
二、在购物游戏中体验、感知单双数
1、教师讲解游戏规则。
数一数,你有几元钱?圈一圈,你能买几样东西?
2、幼儿进行购物游戏,提醒幼儿做一个文明小顾客。
三、在交流与比较中理解单双数
1、讨论:你有几元钱?买了几样东西?还有钱多吗?
2、回收代用券:还剩一元的小朋友把代用券送到一边,都用完的送到另一边。
3、集体检验,解决问题:“1”该送哪边?
4、教师小结:
①像1、3、5、7、9这样两个两个地数,总会剩下一个的数叫单数;2、4、6、8、10这样都能凑成2个2个的数叫双数。
②10以内有5个单数,也有5个双数。
③单数挨着双数,双数挨着单数,它们手拉手,都是好朋友。
四、在游戏与操作中区分单双数
1、寻找身边的单双数
2、分组操作
准备4组操作材料,幼儿自由选择进行操作。
●圈一圈:两个两个地圈,区分单双数。
●分一分:在许多点卡和图卡中区分出单双数。
●转一转:转动转盘,当转盘停下时记录下指针所指的数是单数还是双数。
●扔一扔:扔骰子,记录下单双数并写出它的两个相邻数。
3、集体游戏
抱一抱:单数——自己抱自己;双数——找个朋友抱一抱。
五、收拾物品,结束活动
人教版六年级上册数学教案13
【教学内容】
圆的面积
【教学目标】
知识与技能:
1、能正确运用圆的面积公式计算圆的面积。
2、能运用圆的知识解决一些简单的实际问题。
过程与方法:借助割补的方法,让学生回忆旧知,应用类比迁移和小组讨论归纳等活动培养学生创造能力、解决问题的能力、科学探究能力。
情感、态度与价值观:在学生实践操作和分析过程中,体会以直代曲的转化思想,使学生进一步体会转化方法价值,促使学生实现认知上的飞跃。
【教学重难点】
重点:能正确运用圆的面积公式计算圆的面积。
难点:能运用圆的知识解决一些简单的实际问题。
【导学过程】
【知识回顾】
圆的面积公式是什么?你是怎么得到的?
【新知探究】
【一、自主预习】
1、已知r=2厘米,怎样求C?
2、判断:
(1)长方形的面积=(长+宽)×2 ( )
(2)长方形的面积=长×宽 ( )
(3)50的平方=50×2 ( )
(4)50的平方=50×50 ( )
(5)面积单位比长度单位大 ( )
3、你所学过的平面图形的面积是怎样求的?
4、自学教材第67-69页,提出自己不懂的问题。
5、把127页上的圆剪下来,按书上的方法,转化成一个长方形,说说你有些什么发现?
【二、合作探究】
圆的面积怎么求?
1、观察老师的演示,(把圆剪、分、拼)思考:
①拼组的是( )形。
②拼组的图形面积与圆的面积有什么关系?
③拼组后图形各部分相当于圆的什么?
因为:拼组后的图形的面积=( )×( )
所以:圆的面积=( )×( )
2、圆的面积公式的应用。
①学习例1,说说解题方法,完成做一做例1。
②学习例2,说说怎样利用内圆和外圆的面积求出环形的面积?
【三、拓展归纳】
1、一个圆可以转化成一个近似的长方形,这个长方形的长相当于圆的周长的一半,即C÷2=2πr÷2=πr,长方形的宽就是圆的`半径r。
2、要求圆的面积,必须知道( )。
【知识梳理】
本节课你学习了哪些知识?
【随堂练习】
1.一个圆形桌面的直径是 2米,它的面积是( )平方米。
2.已知圆的周长c,求d=( ),求r=( )。
3.圆的半径扩大2倍,直径就扩大( )倍,周长就扩大( )倍,面积就扩大( )倍。
4.环形面积S=( )。
5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是( )厘米,画出的这个圆的面积是( )平方厘米。
6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的( )倍,小圆面积是大圆面积的( )。
7.圆的半径增加1/4圆的周长增加( ),圆的面积增加( )。
8.一个半圆的周长是20.56分米,这个半圆的面积是( )平方分米。
9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长
长10厘米,这个长方形的面积是( )平方厘米。
10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是( )平方厘米;
再在这个圆内画一个最大的正方形,正方形的面积是( )平方厘米。
11.大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为( )平方厘米。
12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是( )平方厘米
人教版六年级上册数学教案14
活动目标:
认识基本的平面图形,圆,正方,长方形,三角形活动重点:认识基本的平面图形,能够数出来。
活动难点:
认识基本的平面图形,能正确数出多少种图形。
活动过程:
1、初步认识长方体。
教师:在日常生活中我们见到的物体有不同的形状,(拿出一个纸盒)。大家看,这是一个纸盒,谁知道它是什么形状的?板书:长方形。
让学生数一数纸盒有几个面?教学生有顺序的`数法:上下,左右,前后各两个面,一共是六个面。
再出示一个长方体实物,其中有两个面是正方形的,要求学生看一看长方体的各个面和相对面有什么特点。
这样使学生明白长方体有6个面,相对的两个面的形状相同。
2、初步认识正方体。
出示一些正方体的实物。问:谁知道它们是什么形状的?板书:正方体。让学生数一数正方体有几个面?并且指出正方体的六个面有什么特点?
3、出示长方体和正方体的图。
4、辨认长方体和正方体。
5、认识球体和三角形也同样列举出一些道具,例如:乒乓球、篮球、三角尺等。让幼儿在很直观的辨认出各种图形,并让幼儿自己列举出生活中都看见过哪些实物是什么图形?
一、巩固练习
做练习十五的第1—4题。
二、小结
回忆长方体有几个面,相对面一样吗?
正方体、球体、三角形呢?
人教版六年级上册数学教案15
第5单元 圆
确定起跑线
【教学内容】
确定起跑线
【教学目标】
知识与技能:
1、通过数学活动让学生了解田径跑道的结构,学会确定跑道起跑线的方法。
2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3、在主动参与数学活动的过程中, 让学生切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。
过程与方法:结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
情感、态度与价值观:让学生体会到数学的有用性。
【教学重难点】
重点:通过对跑道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。
难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
【导学过程】
【情景导入】
(1)播放20xx年世界田径锦标赛男子100米决赛场面,博尔特以9秒58创新世界纪录。
师:100米赛为什么那么吸引人?让那么多人为这9秒58而欢呼不停?(因为公平,才吸引人。与学生聊一聊比赛中公平的话题。)
(2)播放20xx年世界田径锦标赛男子400米决赛场面。
师:看了两个比赛,你们有什么发现,又有什么想法?(组织学生交流)
(100米跑运动员站在同一条起跑线上,而400米跑运动员为什么要站在不同的起跑线上?
400米跑的起跑线位置是怎样安排的?外面跑道的运动员站在最前,这样公平吗?)
今天,我们就带着这些问题走进运动场,用我们学过的`知识来研究、解决这些问题,了解比赛的时候各跑道的起跑线是如何确定的。
【新知探究】
(一)观察思考,找出问题关键。
(课件出示完整跑道图)
观察跑道图,每条跑道一圈的长度相等吗?差别在哪里昵?比赛的时候,是怎样解决这个问题的?怎样才能做到公平比赛?
(二)分析比较,确定解决问题思路。
1、小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?
学生充分交流得出结论:
①跑道一圈长度=2条直道长度+一个圆的周长
②内外跑道的长度不一样是因为圆的周长不一样。
2、小组讨论:怎样找出相邻两个跑道的差距?
①分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就可以知道相邻两条跑道的差距。
②因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的差距。
(三)计算验证,解决问题:
计算圆的周长要知道什么?
直径
第一道的直径为72.6米,第二道是多少?第三道呢?
(让学生选择自己喜欢的方法进行计算)
方法一:计算完成下表。
方法二:
75.1×3.14-72.6×3.14=7.85(m)
77.6×3.14-75.1×3.14=7.85(m)
……
(引导学生将3.14159换成π进行计算)
刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?
第二种方法更简便。
如果我们在计算圆的周长时直接用π来表示,看你有什么发现?
(72.6+1.25×2)π-72.6π
=72.6π-72.6π+1.25×2×π
=1.25×2×π
(75.1+1.25×2)π-75.1π
=75.1π-75.1π+1.25×2×π
=1.25×2×π
……
(相邻跑道起跑线相差都是“跑道宽×2×π”)
师:从这里可以看出:起跑线的确定与什么关系最为密切?
生:与跑道的宽度关系最为密切。
师(小结):同学们经过努力终于找到了确定起跑线的秘密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置。
三、巩固应用,形成技能:
1、小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?
2、在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?
【知识梳理】
本节课你学习了什么知识?
【随堂练习】
请你设计一个200米的跑道
【六年级上册数学教案】相关文章:
六年级上册数学教案11-09
小学六年级上册数学教案06-14
六年级上册数学教案苏教版02-28
小学六年级上册数学教案优秀03-28
苏教版六年级上册《数的世界1》数学教案06-01
苏教版六年级上册《整理与练习1》数学教案06-01
五年级上册数学教案05-24
八年级上册数学教案01-13
一年级上册数学教案11-08
三年级上册数学教案05-23