- 《运算律》教案 推荐度:
- 相关推荐
《运算律》教案(汇总15篇)
作为一位杰出的老师,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。优秀的教案都具备一些什么特点呢?以下是小编精心整理的《运算律》教案,仅供参考,欢迎大家阅读。
《运算律》教案1
教学目标
1. 在对已学知识的整理和复习中,进一步理解加法、乘法的交换律和结合律,能合理、灵活、正确地应用运算律进行简便计算。
2. 能联系生活实际运用加法、乘法的交换律和结合律,解决简单的实际问题。
3. 在自主探究、合作交流中获得成功的体验,激发学习数学的积极性。
教学过程
一、 创设情境,激趣引入
1. 引导观察。
谈话:下面是某新华书店销售的三种图书的价格。
出示:
书 名
每本书的价钱(元)
《数学故事》
12
《成语故事》
15
《科幻故事》
18
提问:观察表格,你能从中获得哪些信息?能提出哪些数学问题?(如:买一本《数学故事》和一本《成语故事》要用多少元?买三本书一共要用多少元?三年级有5个班,每个班买3本《数学故事》,一共要用多少元?等等)
随着学生的回答,投影出示学生所提出的问题,并对提出的问题进行整理。
2. 解决问题。
提问:同学们很会动脑筋,提出了这么多数学问题,你想解答哪些问题?选择一些自己感兴趣的问题进行解答,并想一想才能怎样比较快地算出结果。
学生独立解决自己所选择的问题,教师巡视。
反馈:你解决了哪些问题?是怎样计算的?(着重交流是怎样运用加法或乘法的运算律使计算简便的)
板书:12 + 15 + 18 12 3 5
12 + 18 + 15 12 5 3
比较:观察上面的两组算式,你想到了什么?
3. 揭示课题。
谈话:看来,我们在解决问题时,经常要运用加法、乘法的运算律,使计算简便。今天这节课我们就一起来复习加法和乘法的运算律。(板书课题:运算律复习)
提问:我们已经学过哪些加法和乘法的运算律?你想怎样复习?通过复习达到什么要求?
[说明:从现实情境引入,可以激发学生的学习热情,激活学生学习的兴奋点。注意对复习方法进行指导,把学生放在学习的主体地位,增强了学生的主人翁意识。]
二、 合作交流,知识梳理
谈话:下面就请同学们回忆一下本学期学过的运算律,用自己喜欢的方法整理出来,并在小组内交流你整理的结果。
学生独立完成整理,教师巡视。
学生中可能出现的整理方法有:举例,文字描述,字母表示等。
小组活动:同学们都用自己的方法整理了已经学过的运算律,请把你整理的结果和小组里的同学一起分享,并讨论一下,能把你们小组同学的各种方法整理在一张表格里吗?试一试。
组织交流,由小组选派代表,交流整理的方法和完成的表格。
根据学生的整理结果,完成下面的表格:
举 例
文字描 述
字母表示
加
法
交换律
结合律
乘
法
交换律
结合律
[说明:让学生自己整理已经学过的运算律,便于学生加深对加法和乘法运算律的理解,同时,形成合理的认知结构。学生在这一过程中,也能体会到合作学习的作用,进一步增强与同伴合作学习的意识。]
三、 巩固练习,加深理解
1. 填一填。
出示题目:
下面的计算分别应用了什么运算律?在括号里填一填。
86 + 35 = 35 + 86( )
72 + 57 + 43 = 72 + (57 + 43)( )
76 40 25 = 76 (40 25)( )
125 67 8 = 125 8 67( )
学生独立完成,全班交流。
2. 辨一辨。
出示题目:
先在括号填上适当的数,再连一连。
81 + ( ) = 0 + 81 乘法交换律
16 4 25 = 16 ( )加法交换律
184 + 168 + 32 = 184 + ( )乘法结合律
a 56 b = ( ) 56 加法结合律
学生独立完成后,组织交流。
3. 比一比。
下面每组题的计算结果相同吗?为什么?
(1) 88 + (24 + 12) (2) 28 15
(88 + 12) + 24 7 (4 15)
(3) 856 - (656 + 120) (4) 540 45
856 - 656 - 120 540 9 5
要求:比较每组的`两道题,它们的计算结果相同吗?各是应用了什么运算律或运算性质?
4. 算一算。
出示题目:
你能分别算出三角形、正方形中几个数的和,圆中几个数的积吗?
学生独立完成后,全班交流算法,并说一说怎样算比较快。
[说明:通过一组有层次的练习,引导学生在填一填、辨一辨、比一比、算一算等数学活动中,由具体到抽象地加深对运算律的理解,为灵活应用运算律解决实际问题打下基础。]
四、 灵活应用,解决问题
1. 下面是某校学生生活区今年上半年用电情况,根据相关信息,解决下列问题。
以小组为单位进行比赛,求出一共用电多少千瓦时,看哪一组算得又对又快。
分组汇报怎样算比较快。
提问:解决了上面的问题,你有什么想对大家说的吗?
2. 下面是四(2)班马小平同学阅读三本课外书的情况统计。
提问:根据表中数据,你能提出数学问题吗?
提问:怎样分别求出每本课外书一共有多少页呢?怎样算比较快?自己先想一想,再独立解决。
学生独立列式计算后,指名介绍自己的算法。
师生共同评价各种算法,并总结应用运算律使计算简便的方法。
[说明:本环节为学生提供了两个具有现实意义的数学问题,问题中没有要求学生应用运算律进行简便计算,但学生通过分析题中的数据,会发现这些题具备应用运算律进行简便计算的特征,通过计算、交流、反思等学习活动,进一步感受运算律在解决实际问题过程中的价值。]
五、 全课总结,质疑问难
提问:今天的这节课,我们复习了哪些内容?你有哪些收获?还有哪些不理解的问题吗?
学生交流,并评价自己与同伴的表现。
[说明:让学生适时反思自己在本课学习中的所得,及时评价自己与同伴的学习行为、态度,大胆地说出遇到的困惑或困难,提出自己的观点,有利于学生形成积极的学习态度,提高学习效率。]
六、 课后延伸,挑战自我
用简便方法计算下面各题。
995 + 996 + 997 + 998 + 999 125 (17 8) 4
1 + 2 + 3 + 4 + 5 + 95 + 96 + 97 + 98 + 99
25 32 125
[说明:课后安排富有挑战性的练习,不仅可以进一步深化本课学习内容,更为那些学有余力的学生提供挑战自我、超越自我的机会。]
《运算律》教案2
教学目标:
1、知识目标:使学生进一步理解和掌握运算律的意义,能应用运算律进行简便计算。
2、通过同桌合作整理知识框架,提高学习的系统性,培养学生归纳、总结等自我复习能力及合作精神。
3、培养学生的数学应用意识,激发学生成功学习数学的自信心和创新意识。
教学重点:
理清知识间的联系,建构起知识网络。
教学难点:
加强学生对于乘法分配律的理解与运用,通过比较进一步帮助学生理解乘法分配律和乘法结合律的区别。
教学准备:
多媒体课件。
教学过程:
一、谈话揭题,导入新课。
1、今天复习什么内容?(运算律)什么是运算律?(进行简便运算的一些规律)
2、出示习题帮助学生回顾各运算律。
口答:在□里填上合适的数,在○里填上运算符号。并说一说运用了什么运算律?
45+26=26+□,运用了(加法交换律)。
23×56=56○□,运用了(乘法交换律)。
122+(78+45)=(□+□)+45,运用了(加法结合律)。
7×25×4=7×(□×□),运用了(乘法结合律)。
45×67+45×33=(□+□)○45,运用了(乘法分配律)。
3、回忆各运算律内容及字母表达式。
提问:我们在四年级一共学习了这五个运算律。你学哪个运算律时觉得最轻松,你能向同学们介绍一下这个运算律吗?
根据学生的'回答板书运算律的字母表示式。
加法交换律:a+b = b+a
加法结合律:a+b+c = a+(b+c )
乘法交换律:a×b = b×a
乘法结合律:a×b× c = a×(b×c )
乘法分配律:a ×(b+c)= a×b+a × c
减法性质:a-b-c = a-(b+c )
除法性质:a ÷ b ÷ c = a ÷(b × c )
二、查漏补缺,强化知识点。
1、你觉得哪个运算律的知识学习起来最难?为什么?
2、举例比较,启发思考。
(1)出示题组:125×(80×8)125×(80+8)
(2)老师在教这部分内容的时候,发现很多学生在做时容易出错。
(3)这两题你会做吗?请在作业本上独立完成。
3、基本训练。
当个小法官:判断下面的话是否正确。
① 65+35÷7×6的第一步算65+35,这样很简便。()
② 101×46-46=100×46。()
③ 134×8=125+9×8。()
④ 25×(40×4)=25×40+25×4。()
⑤ 350÷50×7=350÷(50×7)。()
⑥ 125×7+3×125=125×(7+3)。()
三、知识整理过程,构建知识联系。
1、如果将这五个运算律的知识来理一理,分分类?你会怎么处理呢?(先在四人小组交流一下,再汇报)
在“乘法分配律”时,设问:乘法分配的表达式中即有乘法也有加法,你觉得分在哪一类合适呢?有不同的意见吗?
2、刚才从运算方法上分成了两类,你能横向再看看、再理理吗?引导学生再从规律特点上继续思考。(交换律、结合律、分配律)
观察数、符号、式子的特点,理解相关运算律的特点。
3、通过刚才的整理,你有什么新的收获吗?(你还会将乘法结合律和乘法分配律搞混淆吗)
四、综合训练。
1、关于乘法分配律的专项练习。
(1)自主设计乘法分配律的各种题型。
77×37+23×37156×37-56×3725×(40+4)25×(40-4)99×37+37101×37-37102×3598×35
(2)汇报展示,学生口答。
(3)通过训练,你有什么新收获吗?(关注两个方面:一是乘法分配律的拓展,二是相关的解题经验。)
2、星星水果店运进32箱苹果和48箱梨,每箱都重15千克。运来的苹果比梨少多少千克?
3、用简便方法计算。
367-89-1125×32×125728×72÷3676×25+8×75
《运算律》教案3
【教学内容】教材第64页
【教学目标】
⒈ 使学生进一步掌握加法乘法的一些简便计算的方法,能合理灵活的进行计算。
⒉ 进一步提高学生的计算能力和分析能力。
【教学过程】
一、补充:
前面我们分别学习了加法、乘法的交换律和结合律,想一想,会不会有减法和除法的交换律和结合律呢?为什么?(估计学生会举例说明)
那减法中会有哪些运算规律呢?
比如说:a-b-c,它可以等于什么呢?
a-(b+c)或a-c-b
举例说说我们情况下可以分别用这两种方法:
348-57-43、348-48-57
A-b+c可以等于什么呢?也请举例说明。
A÷b÷c、a×b÷c、a÷b×c呢?
指出:这些变化,都可以使计算简便,要灵活加以应用
继续补充:32×25
这题只有2个乘数,那它又可以怎么简便计算呢?
在学生交流的基础上,强调:在乘法中,25最喜欢4,所以可以把32分成4×8,写成:8×(4×25)=8×100=800
二、完成p.63的练习
1、第5题,要求学生读题后列式,分别算出苹果和梨各有多少千克?
在解答这题的.时候,要提醒学生列式的时候还是要注意算式每一步的解答是否有意义?正确列完算式后再考虑能否简便计算
2、第7题,填写表格,然后再说说表中的哪个乘数变化了,是怎样变化的?积又是怎样变化的?
要注意引导学生说完整的句子进行表达
3、第8题,先算一算,再比一比每组中哪道算式的计算比较简便
估计学生都会直接选择下面的题进行计算。
算完后追问:45×12和36×15,这两个算式的结果都是540,但如果只看算式你能知道它们的结果是一样的吗?想一想,能不能把算式拆开后再比较呢?
(比如:3×15×12=3×12×15)指出:这里其实也应用了乘法的运算规律
4、第9题,怎样算简便就怎样算
要求学生在自己的本子上能写出完整的解答过程
三、完成p.64
1、口算
学生做完后校对得数
2、第5题,算出表中每个月几种费用的合计数。要求学生算之前都要先观察,看一下能否简便计算。算完后再交流方法及结果
四、布置作业:
《运算律》教案4
【教学内容】
教材第63页
【教学要求】
使学生进一步理解和学会应用乘法交换律和结合律进行简便计算,培养学生分析推理的能力。
【教学重点】
应用定律简便计算
【教学过程】
一、复习
⒈什么叫乘法交换律?用字母如何表示
⒉什么叫乘法结合律?用字母如何表示?
3、揭示课题
二、教学新课
⒈提问:我们学习的'乘法交换律在我们学习中有什么应用?
完成想想做做第6题,指名板演。
⒉提问:我们学习的乘法交换律和乘法结合律,还可以为我们的学习带来哪些方便呢?
a) 请同学们用简便方法计算下面各题
b) 指名说说每题用了什么运算律?为什么要先将这两个数相乘
c) 小结:几个数相乘,可以应用定律,将得数为整十整百的两个数先乘。
3、完成想想做做第题
a) 出示:25*24 45* 1236*15
b) 比较两组中的两题,你发现了什么?
小结当两数相乘时,不能很快口算出结果进,我们可以将一个因数看成是另外两个因数相乘的形式,注意:把一个数分成两个数后,一定要有两个数的积是整十或整百的数才简便
c) 练习:
在框里填上适当的数
35*18=35*() 16*15=16*( )
45*12=45*( )18*25=18*()
125*32=125*( ) 25*24= 24 * ()
用简便方法计算
45*18 28*15 25*12
三、巩固练习
完成想想做做学生独立完成,集体评讲
《运算律》教案5
教材分析
教材要求学生从生活中的例子来探索加法运算特点,通过观察和思考分析找出它的规律,要示学生初步了解这些规律,用字母表示这些规律,并能够理解及运用。教材在教学安排上由浅入深,加法运算律的学习是探讨乘法运算律的基础,因此这部分知识占据着重要的篇幅。在此基础上,教材引出了乘法运算律的知识,这两部分知识紧密联系在一起。教学中让学生通过循序渐进的学习,在培养分析归纳能力的同时,培养学生“由特殊到一般,再由一般到特殊”的认识事物的方法和独立自主、主动探索的'学习意识。
学情分析
1、紧密联系学生的生活实际,引导学生在已有经验的基础上发现并归纳出运算律。
2、重视运算律的发现过程。引入实际事例,引导学生主动地探究规律、发现规律。在练习过程中提高合情推理和初步演绎推理的能力。
3、在具体的情况下逐步学会合理灵活地应用运算律,增强应用意识。
教学目标
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母表示加法交换律和结合律。2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点和难点
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。
教学过程
一、创设情景,初步感知
1、课前谈话。
2、情景引入。(出示课件)
二、教学加法交换律
1、师:要求“跳绳的有多少人?”可以怎样列式呢?
生口答列式
师:你发现了什么?那可以用什么符号连接呢?(=)
(板书:28+17=17+28)
2、师:求“女生有多少人?”你会列式吗?
(生答,师板书:17+23=23+17)
3、师:你能照样子说出几个这们的等式吗?
4、师:(1)请你仔细观察上面的等式,你发现等号两边的算式什么变了?什么没变?
(2)像这样的等式写得完吗?那你能不能想办法用一个等式来表示所有的等式呢?
5、交流:我们以前用过这样的规律吗?想想在哪儿用过?(加法验算)
三、教学加法结合律
1、师:刚才同学们不仅解决了2个问题,而且还学会了加法交换律。那你会解决第三个问题吗?请你用一个综合算式来表示。
(1)学生尝试练习
(2)交流。师:你是怎样列式的?(28+17)+23
你先算的是什么?(跳绳的人)
追问:还有不同的方法吗?28+(17+23)
你先算的是什么?(女生人数)
师:(28+17)+23算出来的是什么?28+(17+23)呢?你发现了什么?可以用什么符号连接?(=)
板书:28+(17+23)=(28+17)+23
2、师:如果让你来算,你喜欢哪种方法?为什么?
3、师:请你算一算,下面的O里能填上等号吗?
4、师:请你仔细观察这两个等式,等号的左右两边有何共同点和不同点?
5、师:(1)三个数相加,是不是都存在这样的规律呢?
(2)你能照样子写出几个这样的等式吗?
(3)写得完吗?你会像加法交换律一样,用含有字母的式子来表示吗?
板书:(a+b)+c=a+(b+c)
6小结。(板书:加法结合律)
四、巩固练习
《运算律》教案6
教学目标:
1.结合具体事例,经历运用乘法运算定律计算并解答简单实际问题的过程。
2.能灵活运用乘法的运算定律进行简便计算,体验计算方法的多样化。
3.在选择合理的灵活的方法进行计算的过程中,体验乘法运算定律在解决实际问题中的价值,将数学与生活紧密联系起来。
教学重点:
1.体验算法的多样性,并能选择最简捷最适合的解题方法。
2.体验运用乘法运算定律解决实际问题的简便性。
教学难点:
运用乘法运算定律解决简单问题的过程。
教学过程:
一、情景导入
以一首诗开启今天的数学课堂,《钱塘湖春行》,教师配乐朗诵。
读完此诗,你有没有感受到春的气息,春天青山绿水、鸟语花香,到处一派生机勃勃的景象,春天也是郊游的季节。这个春天,我们去了科技馆与人民公园,我们马上还要去银川研学旅行了,在去之前我们先解决一些隐藏在这次旅行中的.数学问题,你有信心来解决吗?
问题一:
1.出示例题:四年级有102名师生要去研学旅行,平均每人的费用25元,那么师生这次旅行共需要多少钱?
①指明学生读题,明确已知条件和所求问题,询问怎么列式?为什么用乘法?②要求:学生独立计算之后,再与四人小组交流算法。
③师巡视收集不同算法。(关注运用乘法运算定律进行计算的情况。)
2.展示交流算法。(算法预设如下)
A:笔算
1 0 2
× 2 5
5 1 0
2 0 4
2 5 5 0
B:口算
100×25=2500(元)
2×25=50(元)
2500+50=2550(元)
C:乘法结合律
25×102
=25×(2×51)
=25×2×51
=50×51
=2550(元)
D:乘法结合律
102×25
=102×(5×5)
=102×5×5
=510×5
=2550(元)
E:乘法分配律
102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
通过刚才咱们用多种方法求解102×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)
教师板书102×25
=(100+2)×25
=100×25+2×25
=2500+50
=2550(元)
答;师生这次旅行共需要2550元钱。
4.揭示课题,今天我们就来学习用乘法简便运算来解决生活中的数学问题。
5.如果我把题中条件稍加改动,你还会不会算?
师改题104人,,每人25元。学生口答,教师板书
6.总结:一个接近整百却大于整百的数乘另一个数,我们可以把它看成整百数加一个数的和乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题二:
我们继续往下研究。
1.在102人中有4位是教师,学生自由98人,这些学生应交多少钱?指名读题列式。
要求:先独立完成,再同桌交流算法。
展示交流算法。(算法预设)
98×25
=(100-2)×25
=100×25-2×25
=2500-50
=2450(元)
答;这些学生应交2450元钱。
3.如果我把题中条件稍加改动,你还会不会算?
99人是学生,每人28元,一共多少钱?学生口答,教师板书。
4.总结:一个接近整百却小于整百的数乘另一个数,我们可以把它看成整百数减一个数的差乘另一个数。再利用乘法分配律来计算,从而让计算变得更加简便。
问题三:
继续往下挑战
1.去春游的学生中有36人是四年级(2)班的学生,四年级(2)班的学生应交多少钱?
要求:学生自由读题,独立完成。
2.集体交流展示算法。(算法预设)
A:36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
B:36×25
=(40-4)×25
=40×25-4×25
=1000-100
=900(元)
3.通过刚才咱们用多种方法求解36×25我们发现,哪种方法更简便?为什么?(学生自由发言,阐明理由)教师板书
36×25
=(4×9)×25
=9×(4×25)
=9×100
=900(元)
答:四(1)班学生应900元钱。
4.总结:如果是特殊数25乘另一个数,可以把另一个数拆分成4乘几的形式,再利用乘法结合律来计算,从而让计算变得更加简便。
二、巩固反思
通过刚才的学习,老师想知道大家为什么能算的又快又准确,有没有什么技巧与方法,能跟老师分享一下吗?
学生自由发言
总结:①两个数相乘,如果一个因数是接近整十、整百或整千的数,可以将这个数写成整十、整百或整千的数加或减一个数的形式,再运用乘法分配律进行计算,会使计算简便。
②如果是特殊数25(或125等)乘另一个数,可以把另一个数拆分成4乘几(或8乘几)的形式,再运用乘法结合律进行计算,会使计算简便。
一次简单的出游,竟然隐含着这么多的数学问题,但都被我们的数学小能手们一一解决,大家说学好数学有没有必要?学好数学可以解决我们生活中的很多问题。
三、课堂小结
这节课你有什么收获?
四、板书设计
乘法简便运算
资源文件列表:
《运算律》教案7
教学目标:
1、探索和理解运算律和性质,能应用运算律进行一些简单运算。
2、能根据题目灵活运用四则运算定律和性质使计算简便。
3、能理解四则运算中的数学术语,进一步提高计算能力。
教学重点和难点:
1、重点:掌握和灵活运用四则运算定律和性质。
2、难点:选择合理、灵活的计算方法进行计算。
教具准备:
ppt课件
教学过程:
同学们:计算一直是我们学习数学的最大困扰,有没有什么方法能使计算简便一点呢?今天,让我们一起来学习《运算律》吧。
一、 我们学过了哪些有关整数的运算律? 你能用字母表示出来吗。下面让我们用多种方式来验证这些运算律的合理x##b。请同学们看课本76页第1题。小组讨论一下,你是怎样验证的?
活动一:用多种方式验证这些运算律的合理性。
你知道淘气是怎样验证“加法结合律”的吗?(举例子法)你呢?
笑笑又是怎样验证“乘法交换律”的?(实际问题法)你呢?
乐乐又是怎样验证“乘法分配律”的?(面积模型法)你呢?
还有“加法交换律”和 “乘法结合律”请同学们自己回去验证。验证的方法多样,有的利用举例法,有的'利用情境法,有的利用图解等。
(教学反思:通过师生互动,学生互动,促使学生在探索中交流,在交流中反思。)
通过验证这些运算律,相信同学们心里踏实多了。下面我们来运用一下。
试一试:下面的计算分别应用了什么运算律? 86+35=35+86 ( ) 72+57+43=72+(57+43) ( ) 76×40×25=76×(40×25) ( ) 125×67×8=125×8×67 ( ) 46×37+37×54= 37×(46+54 ) ( ) 4×8×25×125=4×25×(125×8) ( ) 437-161-39 =437-(161+39) ( ) 127÷25÷4=127÷(25×4) ( ) 前面我们学的那些都是有关整数运算的运算律,其实生活中还会遇到其他数,像分数,小数……同学们请看两组算式。 二、出示课本第3题,然后让学生读,自己的发现和感受。 教师引导学生观察、思考,使学生感知;满足数的运算的需要也是数扩充的重要原因,也是产生负数和分数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。教学时,教师可以将这部分内容与“数学万花筒”联系起来,先让学生查阅有关数系扩充的资料,互相交流学习,然后看教材提供的问题,真切感受数系扩充的必要。 (教学反思:从运算的角度引导学生对“数”进行再认识,这是对学生认识的提升。)
可见,满足数的运算的需要是数扩充的重要原因。那么,有关整数运算的运算律对于小数、分数的运算还会适用吗?请看下面几组式子,你有什么发现?
活动二:在○里填上“>”“= ”“<”。
1.2+1.8 ○ 1.8 +1.2
38 + 58 ○ 58 + 38
0.8×1.3 ○ 1.3×0.8
35 × 53 ○ 53 × 3 5
(0.9×0.4)×0.5 ○0.9×(0.5×0.4)
(3.2+2.8)×0.6 ○3.2×0.6+2.8×0.6
( 23 -12 )×12 ○12 ×23 -12 ×12
归纳总结:整数运算律对于小数、分数运算也同样适用。 那就让我们带着它走进“数学城堡”吧!看谁的收获最大。 三、巩固与应用
1、课件展示,运用运算律进行简便运算。
鼓励学生在运算的过程中熟悉运算律的“结构”,同时培养简算的意识。
第一组计算:(小组评议)淘气是这样算的。
① 46+32+54
②546+785-146
③0.7+3.9+4.3+6.1
④ 25×49×4
第二组计算:(学生板演,集体评议)笑笑是这样算的。 ⑤ 8×(36×125)
⑥ 8×4×12.5×0.25
⑦ 2.7×4.8+2.7×5.2
⑧ 905×99+905
第三组计算:(学生点评)乐乐是这样算的。
⑨ 4.37 + 18 + 0.63 + 78
⑩ 10.47-5.68-1.32
(11) 4.8÷2.5÷0.4
(12) 36×( 3 4 + 49 - 56 )
2、课本77页“巩固应用”第2题,学生在解决实际问题的过程中,熟悉运算律。通过不同解题方法的比较,使学生再次体会乘法分配律。
(教学反思:结合具体情境体会运算律的正确性,有利于学生掌握算理。)
四、总结:
今天我们学会了什么?
板书设计:
五个定律:
加法交换律: a+b=b+a
加法结合律: (a+b)+c=a+(b+c)
乘法交换律: a×b=b×a
乘法结合律: (a×b)×c=a×(b×c)
乘法分配律: (a+b)×c=ac+bc (a-b)×c=ac-bc
两个性质:
减法的性质: a-b-c=a-(b+c)
除法的性质: a÷b÷c=a÷(b×c)
《运算律》教案8
教学内容
课本56-57页上的内容及数学配套上的相关练习知识与能力
1、能进一步理解并掌握乘法分配律。
2、能应用乘法分配律使一些计算简便,发展应用意识。
过程与方法
经历乘法分配律的探究过程,会用字母表示乘法分配律,进一步培养发现问题和提出问题的'能力,积累合情推理的数学活动经验。
情感态度价值观
体会计算方法的多样性,发展学生的数感。
教学重难点
教学重点
能理解并掌握乘法分配律。
教学难点
培养发现问题的能力。
教学准备
课件、图片
教学媒体选择
PPT
教学活动
自主合作探究
教学过程
【探究学习 自主观察,发现问题。
1)、3×10+5×10=(3+5)×10=
2)、4×8+6×8=(4+6)×8=
我发现:
2、什么是乘法分配律?用字母如何表示?
3、用简便方法计算。
(60+25)×4 78×69+22×69 28×99+28 69×102 85×98
【导学解惑】:
1、请提出你的问题,大家一起来解答。
2、请记录下你认为特别有意义的题。
【当堂检测】:
下面的算式分别运用了什么运算定律
25×34 = 34×25 ( )
7×2×5 = 7×(2×5)( )
2×4+2×6=2×(4+6)()
用简便方法计算。
76×62+24×62 156×99+156 127×101
【课后反思】:
1.想一想,这节课有哪些收获?还存在哪些问题?
2.问一问自己:“今天,我主动学了吗?”
板书设计
根据老师讲课适当板书
作业设计
完成本节课题。第四单元运算律
课题
《运算律》教案9
【教学内容】教材第61~62页
【教学目标】
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验
【教学重点】
理解并掌握乘法交换律和结合律
【教学难点】
懂得乘法交换律和结合律的算理,会用字母表示
【教学过程】
一、学习新课:
1、学习乘法交换律:
演示例题图,谁能用数学语言说说图意?(一组5人踢毽子,3组一共有多少人?)
把算式写在自己的`本子上,全班交流:(1)3×5=15(人) (2)5×3=15(人)
观察这两个算式,有什么相同和不同的地方?
(乘数相同,位置不同,积相等)
因为积相等,我们就可以把这两个算式合写成一个等式,谁能把它写出来?
(3×5=5×3)
读一读,这个等式,问:类似的等式你还能说几个吗?
……
说得完吗?那你有什么好办法?
板书:a×b=b×a
指出:这是乘法运算中的一个规律,知道叫什么吗?(板书:乘法交换律)
2、学习乘法结合律:
演示例题:华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?
请学生独立列式解答。全班交流,可能有的结果:
(1)6×5×23 (2)5×23×6
=30×23 =115×6
=690(人) =690(人)
(3)6×(5×23) (4)6×23×5
=6×115 =138×5
=690(人) =690(人)
评讲这几种方法:
方法一先算的是多少个班级,再算全部
方法二先算的是一个年级参加的人数,再算全部
方法三也是先算多少个班级,再算全部
方法四先算6×23意义不好说,所以不提倡
比较方法一和方法二,这两个算式之间有什么联系呢?(交换了6和23的位置,……用到了刚学的乘法交换律)
比较方法一和方法三,它们有什么联系呢?(三个乘数没变,位置没变,但乘的顺序变了,积没变。)
想一想,这又是乘法中的什么规律呢?
随学生回答板书:乘法结合律
谁能用字母来表示这一规律?a×b×c=a×(b×c)
3、学习试一试
你能用简便方法计算吗?
(1)23×15×2 (2)5×37×2
学生先独立计算,指名板演。
讲评时注意书写的规范,并要学生能说出各是用了什么运算律?
二、完成想想做做的部分练习
1、先填空,再想想应用了什么运算律(题略)
注意最后一题:13跑到了前面,那肯定是用到了乘法交换律,本来是没有括号的,那就是先前面的,后面的算式在后面多了个括号,那就变成了先算后面的,这就用到了乘法结合律
2、比较上下两题,你更愿意算哪题?算一算
3、你能很快说出每束气球上三个数连乘的积吗?
先是同桌互说,再是指名说。其中最后一束,要让学生比较多种方法都比较简便的时候,选择最简便的方法
三、布置作业:
第62页第4、6题
《运算律》教案10
教学目标:
1、知道整数加法的交换律,结合律对于小数加法同样适用的,能运用加法的交换律、结合律进行小数加减法的简算。
2、培养学生的计算能力,提高计算的技巧,发展学生的推理能力。
3、培养学生做事认真,讲求方法,注重实效。
教学重点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。
教学难点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。
教学过程:
一、引入
口算(小组竞赛)
前两组口算,体会凑整的好处;
后两组口算,体会加法运算律给计算带来的方便。
二、探究
1、出示例3
这四种文具,小华各买了一件,他一共用了多少元?
谈话:你会计算这道题吗?请你独立列式计算。
学生独立计算,注意选择学生采用的不同的方法,并展示。
比较:
1)观察这两种算法,你有什么发现?
2)你认为哪种算法简便?
提问用第二种方法的学生:你是怎么想到用这个方法的?
谈话:这种方法的使用,使你想到了整数加法的哪些运算律?
小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。
2、提问:我们以前学习过哪些加法的运算定律?这里的字母a、b、c可以表示怎样的数?
指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的范围既包括整数,也包括小数。
三、练习
1、完成“练一练”的第1题。
集体交流,注意说一说使用的运算律。
补充一题,问,这题为什么不可以用简便方法?
提问:我们在使用运算律进行简便运算的时候,要注意些什么?
一审:审清题目(特别是运算符号)。
二看:观察数字特征,选择比较简便的算法。
三算:认真计算。
四查:查运算顺序;查数字;查每一步的计算。
2、完成第2题。
提问:求接力赛的总成绩,就是求什么?
学生独立解决。
小结:看来加法运算律用到小数加法里,果然很简便。
3、完成练习九的第2题
谈话:下面进行个比赛,请一二两组同学计算第一题,三四两组的同学计算第二题。
这两题做完,让你联想到了什么?
你知道整数减法的性质是什么吗?
你掌握了这个性质后,这一组题,你会选择做哪题?
小结:整数减法的运算性质,对小数减法也同样适用。
4、判断下列算式,能简便运算的,在()里打√,不能简便运算的打×。
2.7+6.6+3.4()
5.08-0.8-4.2()
7.5-3.87+2.13()
6.02+4.5+0.98()
6.17+28+3.2()
6.59+9.32-2.59()
小结:简便运算的时候,是不是光看数字就可以了?
5、填数,使计算简便:
32.54+2.75+()
四、课堂作业:
这节课你有哪些收获?
五、总结
完成练习九的3~5题
教学反思:
本节课是学生在已有的整数加法运算率的计算的基础上学习的。本节课的重点是顺利将加法(及减法的性质)的运算律迁移到小数加(减)法的运算中来,使得计算简便,难点是知识延伸中,学生的再建构。对于加法的结合律和加法交换律,学生已有基础,因此我本节课放手让学生自己去探索,从探索中寻求答案,让学生在探索的过程中既能学到知识,又能在探索中学会技能,避免了学习的`单一性。
在教学本课时,我根据学生的年龄特点和迁移的认知规律,创设贴近儿童生活的问题情境,为学生提供丰富的表象。采用的教学方法主要是:
1、竞赛。本课属于计算课,本身让人觉得枯燥无味、学生缺乏兴趣。因此在口算题目的处理中改为小组竞赛,希望以此为切入点,调动学生学习积极性,同时培养学生合作、竞争意识。
2、自主探究学习的方法。教学时,我创设了小华买文具的生活情景,让学生帮助他解决问题,使学生感受到被信任、能做事情的快乐,不仅实现了角色转换,唤起学生的主角意识,而且让学生享受到助人的乐趣。计算时让学生自行探究,从比较中得到简便算法,这样使学生体会到数学来源于生活,又应用于生活。
3、设计适合学生发展的题目,在本节课中,我另外编排了一些调动学生智力发展的问题,让学生有一个质的提升。
在教学中也出现了很多不足,比如,板书受学生影响,没有列出更合理的,导致板书不能对学生起到引导和潜移默化的作用。几处重要小结也没有做到水到渠成,显得不自然。
《运算律》教案11
教学目标
1、知识与技能:
(1)有理数加法的运算律。
(2)有理数加法在实际中的应用。
2、过程与方法:
(1)经历探索有理数加法运算律的过程,理解有理数的加法运算律。
(2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力
3、情感态度与价值观:
(1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的.联系。
(2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。
重点有理数加法的运算律。
难点运用加法运算律简化运算
教学过程
一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。
两次所得的和相同吗?换几个加数再试试。
计算:-7+2 (-10)+(-5)
二、探究新知
1、填空
(1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4
(2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______
2、
(1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______
(2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________
《运算律》教案12
课题:整理与练习第1课时总第课时
教学目标:
1.通过回顾与整理,使学生形成知识网络,加深对加法、乘法运算律的理解,能运用运算律进行一些简便计算。
2.培养学生根据实际情况选择算法的能力,能灵活地解决生活中简单实际问题。
3.培养学生的探究意识和能力,培养学生进行自我反思和自我评价的能力。
教学重点:整理知识,灵活运用运算律进行简便计算。
教学难点:在解决问题的过程中运用运算律进行简便计算,树立简便计算的意识。
教学准备:课件
教学过程:
一、知识系统整理
提问:这个单元,我们学习了哪些知识?
1.梳理知识。
(1)提问:同桌互相说一说你都学习了哪些运算律?如何用字母表示?
(2)以小组为单位,将本单元学习的运算律进行系统整理。
2.交流汇报。
(1)教师结合学生的汇报完成下面的板书:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)追问:运算律有什么价值?
归纳:运用运算律可以使一些计算简便;可以用交换律验算加法和乘法。
二、查漏补缺训练
1.完成教材第72页“练习与运用”第2题。
出示题目后,可让学生先独立填写,再交流。
交流时,让学生说一说各题分别运用了哪些运算定律进行简便计算。
2.完成教材第72页“练习与运用”第3题。
出示题目后,先组织学生观察各个算式的特点,然后让学生独立进行简便计算。
组织交流时,让学生说说各自的想法。
3.完成教材第73~74页“练习与运用”第5、9、11题。
这四道题都是在解决问题的过程中运用运算律进行简便计算。
第5题,是用连加的方法来解决问题,在计算过程中可以运用乘法结合律先算“54+46”的和。
第9题,是“相遇问题”,“相遇问题”的`两种解题方法符合乘法分配律的特点。
第11题,五年级和六年级“每班人数”相同,因此符合乘法分配律的特点,计算时也可以运用乘法分配律进行计算。
4.完成教材第72~73页“练习与运用”的其他习题。
三、综合运用提升
1.完成教材第74页“探索与实践”第12题。
这道题要求“一共可以收大白菜多少千克”,是一道连加的数学问题,在计算过程中可以运用加法交换律和加法结合律进行简便计算。
练习时,让学生独立解答,再说说哪些地方运用了简便运算。
2.完成教材第74页“探索与实践”第13题。
这是一道探索规律的练习,让学生先计算填出前三小题中间的符号,然后再观察比较,找出规律。
四、反思总结
通过本课的学习,你有哪些收获?还有哪些疑问?
五、课堂作业
《补》
《运算律》教案13
教学目标:
1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。
2、在学习的过程中,树立用规律简算,增强用规律验算得意识。
设计理念:
1、体现了“生活中处处有数学”。
2、课堂上灵活处理教材,选择适当的教法。
3、提高了小组的合作学习有效性。
4、促进了学生的主动性、个性化的学习。
课前准备:
教学挂图
教学过程:
一、创设情境,引出课题。
出示数学挂图:通过看图,把图意说一说。
二、提出问题,解答质疑。
弄清题以后,你能提出什么数学问题吗? (小组讨论)
生答师板书:济青高速公路全长约多少千米? 怎样解答呢?
(1)要求全长多少千米,可以先求每辆车分别行驶的'路程,再求全长的路程。
110 × 2 + 90 × 2 = 220 + 180 = 400 (千米) 还可以先求两辆车1小时行驶的路程,再求全长的路程。
(110+90)× 2 = 200 × 2 = 400(千米)
仔细观察,你能发现什么规律? (小组合作探讨)
生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2 这是个什么规律呢?让我们来验证一下吧。
(小组合作学习) 生自己举例来验证
生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。 你能用字母表示出这个规律吗?
生板书: (a + b).c = a .c + b .c 通过学习,让学生思考运用乘法分配律解决实际问题。 让学生讨论交流自己的想法:
①可以进行验算。
②可以使计算简便。 运用乘法分配律能使计算简便吗? (生小组举例探讨)
三、巩固练习
自主练习: 第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。
第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。
第三题:先观察,再说出对错,然后把错的题重新做出来,集体订 正,并说出错题错在哪里。
板书设计: 乘法分配律
110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)
两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。
( a + b).c = a .c + b .c
《运算律》教案14
完成本节课《有理数加法》的课堂教学后,回首反思,金沙并存,现将我对本节课的反思情况概述如下:
亮点有四:
1、课题的引入。这一环节,我采取提问的方式,由学生小学阶段所学过的自然数的加法开始,提问学生:当初中阶段引入负数以后,如果你是教材的编写者,你会安排哪几种形式的加法?这样学生很快会想到“正+正、正+负、负+正、负+负、0+正、0+负”几种形式,而后自然地提出:“同号相加、异号相加、0加任何数”这三种类型,进一步提升了学生的分类思想;
2、尝试探究的设置。这一环节,我才用借助数轴导学案自主尝试的`形式,点在数轴上的移动学生已经学过,设计问题时涉及到向左、向右移动问题学生自然会联系到数轴,这样根据题意列出式子,借助数轴很快的就能得出运算结果。既充分发挥了学生的主动性、提高了学生的参与度,同时又让学生认识到数学知识的内在联系,知识迁移和划归借鉴也是学习数学的一种很好的方法。
3、有理数加法法则的得出。这一环节,我先将学生尝试探究中的几个式子以及结果全部罗列出来,让学生观察形式特征,猜想结果与形式之间的关系,大胆提出想法,然后举例用数轴加以验证,整个环节中,我只负责帮学生把想说的话板书出来,这极大地提升了学生数学学习兴趣,又让学生感受到了数学当中好多法则规律,都是经过观察、猜想、验证、归纳而得出的,同时又提升了学生数学学习的自信心,也得到了学习数学的一个一般方法。
四是,在对本节课的小结处理,小结由学生自己总结,在学生总结后加以强调,为确保运算结果的正确性,运算中应先确定符号,再计算结果。这样就把围绕初中学生的一个大难题“符号问题”加以弱化,已给学生指出了一个简单检验的方法。
金无足赤,课亦不可能绝对完美,换句话说根本就没有完美的课。闪过亮点之后,需要改进的有四,如:
1、考虑上课时限问题,没有深入展开,致使有部分学生思维以及理解没有跟上,从课后的练习反映出有几个学生运算中还是存在问题。
2、口算展示的时候,没有进行象开火车的形式让更多的学生都出来展示,而是让几个人代劳了。
3、个人上课有些仪态上有些随性,这样会让学生觉得不严谨,可能会滋生学生不良的行为习惯。
4、板书上有些凌乱,缺乏合理规划。
记得有位导演在问到哪部作品拍得最好时,他说道:“下一部”。任何事物都是“玉”与“瑕”共存的,只有经过了,再回首,才会发现“瑕“于何处,我们要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同样的“瑕”再次出现,只有这样,才能取得进步和提升。“艺海无涯,术无止境”只有不断的总结反思才能有更大的提升!
《运算律》教案15
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标
1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
教学重点
在具体情景中探索发现乘法交换律、乘法结合律。
教学过程
一、 创设情景,探索新知
1.教学例1
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:15×2=2×15
8×5=5×8 ……
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的.方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
2.教学例2
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152 (户)=1152 (户)
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书: (8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
16×5×2= 16×(5×2)= 35×25×4=
35×(25×4)= 12×125×8= 12×(125×8)=
观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:16×5×2=16×(5×2) 35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1?练习四第1题:学生独立完成,全班交流,说出依据。
2?连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
三、课堂小结
今天这节课你都有哪些收获?还有什么问题?
【《运算律》教案】相关文章:
《运算律》教案05-28
分数混合运算教案04-12
《乘法分配律》教案09-04
分数四则混合运算教案03-29
有理数的加减混合运算教案04-02
分数乘加、乘减混合运算教案02-26
有理数的混合运算教案三篇12-25
《乘法交换律与结合律》教学反思范文02-18
《数的运算》教学反思04-16
混合运算教学反思04-22