倒数的认识教案

时间:2024-12-07 20:49:16 教案 我要投稿

倒数的认识教案15篇

  作为一位杰出的老师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编为大家整理的倒数的认识教案,仅供参考,大家一起来看看吧。

倒数的认识教案15篇

倒数的认识教案1

  一、引导探究、合作交流

  (一)、意义——从学生比赛中引出,倒数的认识教案。

  1、同桌比赛:(看谁做得又对又快)第一组:(左边学生)×、×第二组:(右边学生)×、×

  2、思考:为什么左边学生做得又对又快?师:观察第一组中的算式有什么特点?(学生汇报:乘积是1)归纳总结:同学们我想刚才比赛的输赢是次要的,但发现这组算式的特点却是重要的。

  3、像这样乘积是1的数你还能写出几组吗?()×()=1、()×()=1

  4、归纳总结、揭示概念乘积是1的两个数叫做互为倒数。(板书)加深理解“互为”

  5、选一组算式说一说

  1谁是谁的倒数?

  2、谁是谁的倒数?

  3谁和谁互为倒数?

  (二)、探索求一个倒数的方法

  1、提问:我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子,教案《倒数的认识教案》。

  2、师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)

  3、提问:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)0的倒数呢?

  4、我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

  二、巩固练习

  1、试着写出3/5、7/2的倒数

  2、试着写出6的倒数

  3、试着写出二又三分之一的倒数

  4、说出下面各数的倒数。2/57/11130.5

  三、拓展延伸

  1、填空:

  (1)1/9的倒数是(),7的倒数是(),0.7的倒数是。

  (2)的倒数是它本身,没有倒数.

  (3)8×=10.75×=1×0.5=12、

  判断:

  (1)因为0.25×4=1,所以0.25和4互为倒数。

  (2)a的.倒数是1/a。

  (3)真分数的倒数都大于1。

  (4)假分数的倒数都小于1。

  (5)1/3是倒数。()

  (6)得数是1的两个数叫互为倒数。

  四、布置课堂作业:

  1、必做题:在作业本上完成学习之友对应练习的第1、4两小题.

  2、选做题:3/4×()=()×7/11=()×6

  五、总结反思,回顾梳理。

  1、今天我们一起学习了倒数的有关知识,你有哪些新的收获?

  2、还有什么问题吗?(没有)

  3、学了倒数有什么用呢?大家课后可去思考一下。

  六、欣赏生活中倒着的现象。

  板书设计倒数的认识乘积是1的两个数互为倒数1的倒数是1。0没有倒数。

倒数的认识教案2

  教学目标:

  引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。

  教学重、难点:理解倒数的含义,掌握求倒数的方法。

  教学过程:

  (一)导入

  1.找找下面文字的构成规律

  呆---杏土---干吞---吴

  2.按照上面的规律填数

  --()--()--()

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  (二)教学实施

  关于倒数同学们想知道些什么呢?学习倒数的含义

  1.观察教材24页的例1,归纳,总结倒数的含义,

  2.举例验证:4和,7和,3和

  4乘的积是,所以4和互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是,所以7和互为倒数。

  归纳:乘积是1的两个数互为倒数。

  3.特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)

  教师归纳板书:0没有倒数,1的倒数就是它本身。

  4.学习例2--求倒数的方法

  让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法

  5.反馈练习

  完成教材24页的做一做,完成练习六的第3、4题

  (三)课堂练习

  找一找下列数中哪两个数互为倒数

  210

  填空

  的'倒数是(),()的倒数是。

  10的倒数是(),()没有倒数。

  (四)课堂小结

  学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。

  课后反思:

倒数的认识教案3

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:,从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/37/15×15/7 5×1/5 0。25×4

  2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)

  你是怎样想的?如0。5、1。7

  3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的`分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1。25 1。2 0学生独立完成,然后交流。

  (1)先说说你找到的这个数的倒数的,你是怎样找的?

  (2)在找这些数的倒数中,你有什么想说的?

  3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)

  四、巩固深化。

  1、做一做,写出下面各数的倒数,并说说你是怎样想的。

  2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。

  3、判断题。书上第25页的第3题。

  补充:(3)2/5×5/2=1,那么2/5是倒数。

  (4)任何一个数都有倒数。

  (5)如果一个数是A(0除外),那么这个数的倒数就是1÷A。 重点讨论:一个数的倒数一定比这个数小。

  那么哪些数的倒数比原数小、大或相等。

  4、完成作业:作业本第12页的1、2、3题。

  五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?

  《倒数》教学的想法和反思

  今天学习《倒数》一课,内容简单,在其他数学版本中只是一个练习内容。倒数对于学生来说,虽然是新的,但是却相当地容易,只要会分数乘法、分数、小数的相关知识就行了。但是在教学中学生往往会产生这样的认识,倒数就是两个数分子分母倒一下就行了。这样就会带来对知识本质的偏离,只关注事物的表象。如何来改变学生这一认识呢?

  结合自己的个人研究重点:1、关注数学概念的内涵和外延的关系。2、关注学生学习数学过程中的思维活动。

  先给自己提几个问题?

  1、 倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?

  倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。

  内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。

  2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。

  于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。

倒数的认识教案4

  教学目标:

  1、理解倒数的意义,掌握求倒数的方法。

  2、能熟练的求出一个数的倒数。

  学情分析:“倒数的认识”是在学生掌握了分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  教学重点:

  理解倒数的意义和求一个数的倒数

  教学难点:

  理解“互为倒数”的意义,明确倒数只是表示两个数间的关系。

  教学方法:

  三疑三探教学模式

  教具准备:

  多媒体课件

  教学过程:

  一、设疑自探

  1、创设情境,导入新课

  同学们,今天这节课老师给大家带来了几幅漂亮的图片,我们一起来欣赏一下吧!(出示课件图片)

  通过欣赏这几幅图片,大家发现了什么?(图片中都有倒影)那么在我们的数学王国里也有这样的.现象吗?(出示课件)今天这节课我们就一起来研究数学王国里的这种奇妙现象——倒数。(板书课题:倒数的认识)

  2、设疑激趣

  看到“倒数”这个数学新名词,大家脑子里产生了哪些问题?请大家来说说你们的问题。大家提的问题都很有价值,都是本节课我们学习的重点内容。

  3、出示自探提示,组织学生自学。

  针对本节课的学习内容制定了自探提示。(课件出示)

  自探提示:

  (1)倒数的意义是什么?

  (2)倒数指的是一个数吗?

  (3)怎样求一个数的倒数?

  (4)是不是每个数都有倒数?

  (5)互为倒数的两个数相等吗?

  请同学们结合自探提示的这几个问题,自学课本28页的内容,让我们一块到书中去寻找“倒数”的秘密吧!

  二、解疑合探

  1、检查自探情况,提问学困生,中等生补充,优等生评价,根据反馈情况适时组织小组讨论或同桌讨论。

  通过自学提问学生“倒数的意义是什么?”

  课件出示:先计算,再观察,看看得数有什么特点?

  得出结论:乘积是1的两个数互为倒数。

  引导学生理解关键词“乘积是1”“两个数”“互为倒数”。

  “乘积是1指的是相乘关系,并且积只能是1、

  “两个数”指的是只有两个数。

  “互为倒数”说明这两个数的关系是相互依存的,缺一不可,不能孤立的说某一个数是倒数,必须说清一个数是另一个数的倒数

  举例说明:因为×= 1,所以和互为倒数,就是的倒数是,的倒数是。

  请学生说出互为倒数的任意两个数。并且说说互为倒数的两个数有什么特点?

  2、讨论(小组合探):1的倒数是(1)。

  0有没有倒数?为什么?(0没有倒数,因为① 0作分母无意义②0×(任何数)≠1)

  3、说一说怎样求一个数的倒数?

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置。

  三、质疑再探

  回顾自探提示的问题是否已解决?关于倒数,你还有什么疑问,提出来大家一起研究。(问题预设:怎样求带分数、小数的倒数?)

  通过下面的练习题的解答来总结带分数、小数的倒数如何求倒数。

  四、运用拓展

  1、完成下面练习题。

  2、全课总结

  本节课你有什么收获?引导学生对本节课内容进行归纳整理,形成系统的认识。

  3、布置作业:

  (1)第28页做一做。

  (2)练习六1、2、3题。

  附:板书设计

  倒数的认识

  乘积是1的两个数互为倒数

  1的倒数是1,0没有倒数

  求倒数的方法:分子分母交换位置

倒数的认识教案5

  第一课时

  【学习内容】

  义务教育课程标准实验教科书(西师版)小学数学六年级上册第31页例1及填一填。第32页课堂活动第1题(1),练习八第1、2、3题。

  【学习目标】

  1.理解倒数的意义。

  2.掌握求倒数的方法,会求一个数的倒数。

  3.经历探究倒数的意义的过程,培养自主探究、归纳概括的能力。

  【学习重点】

  理解倒数的意义,掌握求倒数的方法。

  【学习难点】

  理解特殊数的倒数。

  【课时安排】

  1课时。

  【学习过程】

  一、复习巩固(利用投影打出以下算式)

  × = × = 6× = ×40 =

  × = × = 3× = ×80=

  1.让学生口算出上边等式的结果,以此复习分数乘法的相关知识。

  2.让学生观察并说说下边排分式的特点从而对倒数有一定的感知。

  二、让学生观看书上例题1, 分组合作,讨论解疑。

  1.出示例1。 自主学习例1,相信自己是最棒的!

  例1,观察下列每组数,你有什么发现?

  和 和 和 3和

  教师提示:1.观察每组数中的分子、分母、找出规律.

  ①学生思考,小组交流。②集体汇报

  汇报:每组数中的两个数的分子和分母都调换了位置.

  2.将每组数中的两个数相乘,计算出结果.你发现了什么?

  ①学生思考,小组交流。②集体汇报

  汇报:每组数中的两个数相乘,积都等于1.

  归纳总结:像刚才这样的一组数叫做互为倒数。乘积是1的两个数互为倒数。(板书)

  3.让学生总结倒数的特点.

  分子、分母的位置 互相颠倒 倒数指的是 两个数 之间的关系。

  4.让学生来说说课堂活动中1题(1)。(明确:两个数互为倒数)

  三.训练探索 求 的倒数

  ①学生思考,小组交流。②集体汇报

  学生板演:让一个学生写出来.

  学生讲解:让另一个学生总结求倒数的方法.

  总结:求一个数的倒数, 只要把这个数的分子、分母调换位置。

  四.合作探究

  1.提问:整数有没有倒数,如果有该怎么求,举倒分析。

  ①学生:小组交流,举倒说明。

  ②集体汇报

  2.提问:0和1的倒数是多少?

  ①学生思考,小组交流。(教师提示:从分数、除法之间的关系去考虑。)

  ②集体汇报

  ③总结:0没有倒数,因为除法中0不能作除数,除数相当于分数中的分母,所以0不能作分母。因此0没有倒数,1的'倒数是它本身。

  总结(板书) 求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  五,课堂练习:让学生做教材31页“填一填”

  ①学生独立完成。

  ②集体订正。

  六.出示投影,探究小数的倒数。

  ①学生思考,小组交流。②集体汇报

  ③教师总结:小数也有倒数,与小数乘积为1的数就是小数的倒数。

  七.出示投影,探究带分数的倒数。

  ①学生思考,小组交流。

  ②集体汇报

  ③教师总结:带分数要先转化成假分数后,把分子、分母调换就是这个带分数的倒数。

  八.出示投影,达标检测。

  把互为倒数的两个数连线。

  【当堂检测】

  做练习八(1、2、3)题

  【拓展延伸】

  1.假分数的倒数( )

  A.大于1 B 小于1 C 小于或等于1

  2.一个数的倒数小于1,这个数( )1

  A 大于 B 小于 C 等于

  九、课堂小结:通过这两节课的学习,你有什么收获?

  学生畅谈收获心得,提出自已还不理解的地方,集体帮助解答。

  板书:1、乘积是1的两个数互为倒数。

  2、求一个数的倒数, 只要把这个数的分子、分母调换位置。

  3、0没有倒数,1的倒数是它本身

  【教师反思】

倒数的认识教案6

教学内容:p27倒数的认识,练习六全部习题。

  教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标研究倒数的意义、方法和用处。

  二、新知探索:

  1、研究倒数的意义

  师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2、学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)

  (b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)

  (c、以带分数为例;带分数的倒数是真分数。)

  (d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以整数为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3、讨论0、1的情况:

  1的`倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  1、完成练一练。

  学生独立完成后,集体订正。重点问:8的倒数是几?

  2、练习六5(判断)

  3、补充判断:

  a、a是自然数,a的倒数是1/a。

倒数的认识教案7

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及互为的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  (一)激发兴趣,引出概念

  1.投影。哪个同学和老师比赛?谁说得快?

  师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

  2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

  板书:乘积是1 两个数

  3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

  生:两个数分子、分母颠倒位置就可以了。

  师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

  4.举例说明,什么叫互为倒数?

  师:3是倒数这句话对吗?为什么?

  你们说得对,谁能说出几组倒数?

  同桌互相说,每人说两组。(指名说)

  问:怎样判断他们说得是否正确?

  生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。

  5.思考:1的倒数是几?为什么?0有倒数吗?为什么?

  板书:1的倒数是1。0没有倒数。

  (二)求一个数的倒数

  同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?

  1.出示前面的投影,找特点。

  观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。

  问:谁来说说你发现了什么?

  生:互为倒数的两个数,是分子、分母交换了位置。

  师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。

  学生说老师板书:

  3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。

  谁来给同学们汇报一下?(2~3名)

  板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。

  问:老师为什么要空出一些地方?

  生:0除外。

  问:为什么要加上0除外?(板书:0除外。)

  问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。

  4.课堂练习。

  写出下面各数的倒数:

  35的倒数是怎么想的?

  问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?

  5.写出1.5的倒数,怎样做?

  (三)课堂总结

  我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?

  下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。

  (四)巩固练习

  1.投影。

  问:怎么填得这么快,你是根据什么填的?

  问:①谁能回答?

  ②你根据什么填的?

  ③为什么根据倒数的意义填?

  看下一组题:

  问:怎么填?根据什么?与(2)有什么不同?

  师:所以做题时要认真审题,看清符号,千万不能出审题错误。

  2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)

  3.判断下面各题。对的举,错的举,并说明理由。

  投影出示:

  (1)乘积是1的两个数互为倒数。 ()

  (2)2.5和0.4互为倒数。 ()

  师:你们是怎么想的?

  生:2.5和0.4乘积是1,所以是对的。

  (3)因为1的倒数是1,所以0的倒数是0。 ()

  问:错在哪里?

  问:错在何处?

  问:这道题错在哪了?

  生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。

  4.游戏。

  每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。

  评比表扬优胜,找出谁给前面的同学改了错。

  (五)作业

  课本24页第3,5,6题。

  课堂教学设计说明

  1.这节课的设计思想首先从如何激发学生的.学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。

  2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。

倒数的认识教案8

  一、课时学习目标:

  理解倒数的意义,掌握求倒数的方法;培养观察、概括和用所学知识解决问题的能力;渗透事物相联系的辩证思想。

  二、课前预习导学

  自学课本上的相关内容,思考并回答下列问题:

  ①什么叫倒数?

  ②怎样判断两个数是否互为倒数?

  ③“是倒数”这句话对吗?

  ④你能举出几组倒数吗?

  ⑤怎样求一个数的倒数?

  课内学习研讨

  1、1的`倒数是()

  2,、0有倒数吗?为什么?

  趁热打铁

  1:请你写出乘积是1的两个数的算式,每人写一个,然后传给小组的其他成员,依次类推,在1分钟内答对最多的组获胜。

  2、5/6的倒数是()1/12的倒数是()

  5的倒数是()2又1/2的倒数是()

  7/4的倒数是()1的倒数是()

  五、巩固训练

  我是公正小法官,谁对谁错我来判

  1、2是倒数,1/2也是倒数()

  2、1的倒数是1,0的倒数是0()

  3、因为1/3+2/3=1,所以1/3和2/3互为倒数

  ()

  4、如果a和b互为倒数,那么a×b=1

  ()

  5、一个数的倒数一定比它本身小()

  选择

  1、因为5/3×3/5=1,所以()

  A、5/3是倒数B、3/5是倒数

  C、5/3和3/5都是倒数

  D、5/3和3/5互为倒数

  2、2又5/6的倒数是()

  A、16/5B、6/5

  C、6/17D、17/6

  3、最小的自然数的倒数是()

  A、0B、1

  C、不存在D1/2

  精彩搭配

  把互为倒数的数连接起来

  学了本节课,你有什么收获呢?请写在下面

倒数的认识教案9

  【教材分析】

  教材把倒数的认识编组为分数乘法这一单元的最后独立一节,其意图就是突出这个知识点的地位和作用。因为倒数的概念是学习分数除法必须具备的基础知识,一个数除以分数的计算方法是乘为乘这个数的倒数。教材还注意突出倒数是表示两数间的关系,是相互依存的。要使学生初步体会到倒数不能孤立存在。

  【学情分析】

  学生已经掌握了分数乘法的意义,通过对乘法算式的观察,能够比较容易的掌握本课内容。

  【教学目标】

  1、使学生理解倒数的意义,掌握求倒数的方法.

  2、培养学生的观察能力,找出规律。

  3、培养学生的学习兴趣。

  【教学过程】

  活动一:复习口算下面各题

  640

  380

  活动二:教学倒数的意义.

  1、上面的两组题有什么不同?

  2、像第二组这样,乘积是1的两个数叫做互为倒数.

  3、举例说明什么叫做互为倒数.

  4、倒数是对两个数来说的',它们是相互依存的,必须说一个数是另一个数的倒数。

  5、让学生试着说一说第二组算式中两个数的关系.

  活动三:教学例题(求倒数的方法).

  观察上面第二组算式,发现规律进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

  怎样找出的倒数呢?你能用刚才发现的规律找出来吗?

  分子、分母调换位置

  1的倒数是多少?:0有倒数吗?

  0为什么没有倒数?(因为0不能作分母,所以0没有倒数)

  活动四:做一做书第24页的做一做.

  学生独立解答,集体订正时

  活动五:巩固练习

  1.做练习六的第1、2题.学生完成。

  2.做练习六的第3题.学集体订正时,可以让学生说一下理由.

  3.做练习五的第4题.

  活动六:质疑总结

  通过对倒数的学习,你都有哪些收获?

倒数的认识教案10

  分析

  《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  学情分析

  学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

  教学目标

  1、知道倒数的意义,会求一个数的倒数。

  2、经历倒数的意义这一概念的形式过程。

  3、培养学生观察、归纳、推理和概括的能力。

  4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

  教学重点和难点

  理解倒数的意义,会求一个数的倒数。

  教学过程

  教学环节

  教师活动

  预设学生行为

  设计意图

  一﹑创设活动情境

  倒,你对这个字怎么理解?

  那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?

  出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.

  具有这种关系的.数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。

  学生说,就是把它倒过来,还做了个手势颠倒位置。

  学生有可能会说,每组中都是一个是真分数一个是假分数。

  还有的可能会说第一个分数的分母是第二个分数的分子第一个分数的分子是第二个分数的分母

  学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。

  设疑,让学生产生求知的欲望。

  从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。

  让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。

  二 ﹑探究讨论,深入理解

  让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?

  学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。

  乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。

  让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。

  三﹑运用概念,探讨方法

  3/5的倒数是( ),

  8的倒数是( ),

  0.5的倒数是( )

  1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。

  2. 8可以写成8/1,所以8的倒数是1/8。

  3. 0.5也可以写成1/2,所以0.5的倒数是2.

  让学生归纳总结出找倒数的方法。

  四、补充概念,自我构建

  0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。

  1的倒数是1 。

  0没有倒数。因为0不能做为分数的分母。

  加深对0没有倒数的理解;

  加深对倒数知识的理解;

  学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。

  五、巩固练习,形成技能

  1.同桌互说倒数;

  2.判断。

  (1) 5/9是倒数,9/5也是倒数。( )

  (2)0的倒数还是0.( )

  (3)一个数的倒数一定比这个数小。( )。

  3.开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )

  学生会很活跃。

  加深对0没有倒数的理解;

  加深对倒数知识的理解;

  开放题让学生的思维得到更深层次的拓展。

  六、全课小结

  这节课你学会了什么?

  与教师一起总结

  培养学生的表达能力以及加深对倒数知识的理解。

  板书设计

  倒数的认识

  倒数的意义:乘积是1的两个数叫做互为倒数。

  求倒数的方法:1.分数——分子分母调换位置。

  2.整数或小数——先化成分数,再调换分子分母的位置。

  1的倒数是1, 0没有倒数。

倒数的认识教案11

  教学目标:

  1、使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

  2、培养学生的分析、推理、判断等思维能力,发展学生的思维。

  教学重点:理解倒数的意义,会求不同种类数的倒数。

  教学难点:熟练正确的求小数、带分数的倒数,发现不同种类数的倒数的一些特征。

  教学过程设计:

一、激发兴趣,揭示课题。

  1、(投影)这节课老师就要把这里面的奥秘告诉你们,相信你们得知后比老师说得还快。

  2、同学们认真观察这些算式,你有什么发现?

  板书:乘积是1的两个数

  3、你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门?

  板书:分子、分母颠倒位置

  4、起名。(师指着分子、分母颠倒位置的两个分数)你能给这样的两个分数起个名吗?

  5、根据学生的评价,引出“倒数”一词,板书课题。

  (设计说明:通过师生比赛“看谁填得快”这一情境的创设,激发了学生的学习兴趣和强烈的探究欲望。让学生很快说出乘积是1的两个数,并说说有什么窍门,目的是让学生初步感受互为倒数的两个数的特征,即分子、分母颠倒位置。此时让学生给倒数起名,已是水到渠成,同时也让学生获得了积极的情感经验。)

  二、探究新知

  (一)教学倒数的意义

  1、你能根据自己的理解说说怎样的两个数叫互为倒数吗

  学生此时回答有两种可能:一种是乘积是1的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。

  3、注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。

  4、进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。

  5、(投影)辨析:下面的说法对吗?为什么?

  (1)、是倒数。()

  (2)、得数为1的两个数互为倒数。()

  (设计说明:让学生根据自己的理解说说怎样的两个数叫互为倒数,并找出概念中的关键词语,举例说明对“互为”一词的理解,处处无不显示出学生是学习活动中的主体,教师是学习活动中的组织者和引导者。)

  (二)教学倒数的求法

  1、通过刚才的学习,我们已经知道了什么是倒数。那你会求一个数的倒数吗?你会求什么数的.倒数呢?怎么求的?能举例说明吗?

  生:我会求分数的倒数,如,把分子、分母颠倒位置就是,所以的倒数是。

  师:是个真分数,这位同学求的是一个真分数的倒数,还有谁能说出几个真分数的倒数的?(师板书三、四个例子)

  (设计说明:通过“你会一个数的倒数吗?你会求什么数的倒数?”这一问题,激起了学生思维的涟漪。此时,同学们首先想到的是求一个分数的倒数,教师强调求的是一个真分数的倒数,并让学生再举几个例子,目的是为了后面让学生发现不同种类数的倒数的特征做准备。)

  师:真分数有什么特点?那真分数的倒数有什么特征?

  板书:真分数的倒数都大于1。

  2、求假分数的倒数,研究假分数的倒数的特征。

  师:你还会求什么数的倒数?怎么求的?能举例说明吗?

  生举三、四个例子。师板书。

  师:假分数有什么特点?假分数的倒数有什么特征呢?

  组织学生讨论、交流。

  板书:假分数的倒数都大于或等于1。

  4、求整数的倒数,讨论“0”和“1”的倒数。

  继续问“你还会求什么数的倒数?”当学生说会求整数的倒数时,让学生举几个例子说说怎么求的。

  师:“1”也是整数,谁会求“1”的倒数的?怎么想的?

  板书:1的倒数还是1。

  师:有没有哪个整数的倒数你不会求的呢?

  组织学生讨论:0为什么没有倒数?

  师:仔细观察:整数的倒数有什么特征?

  板书:非0、非1的整数的倒数都是分数单位。

  追问:那分数单位的倒数呢?(都是整数)

  5、求小数、带分数的倒数。

  师:你还会求什么数的倒数?怎么求的?能举例说明吗?

  学生的回答有两种可能:一是求小数的倒数;二是求带分数的倒数。

  (1)、让学生讨论如何求小数的倒数。

  学生会想出两种求法:第一种:把小数化成分数,再颠倒分子、分母的位置,继而求出倒数;第二种:根据倒数的意义,用1除以这个小数。

  引导比较两种求法,得出第一种方法比较通用。

  (2)、让学生讨论如何求带分数的倒数。

  (3)出示几个小数(0.15、2.5、1.25等)和几个带分数让学生求出它们的倒数。

  (设计说明:人的思维活动往往由简单到复杂的,小学生更是这样。所以在老师提出“你会求什么数的倒数时”,他们首先想到的是怎样求一个分数的倒数,然后在考虑整数的倒数的求法,最后想到小数、带分数倒数的求法。这样层层深入,丝丝入扣,有效的突出了重点,突破了难点。教师教得轻松,学生学得兴趣昂然。)

  (三)学生自行总结求倒数的方法。

  板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  三、巩固练习

  1、呼应开头。现在你知道老师为什么填的这么快了吗?谁愿意在和老师比一次。(投影出示复习题)

  2、下面哪两个数互为倒数?(做练习六第二题)

  3、辨析(用手势判断对错).投影出示练习六第5题。

  4、谁会填?

  (1)×()= ×( )=3×( )=025×( )

  (2)×()= ÷()= +()= -()

  师:你是根据什么填的?

  (设计说明:练习设计,力求扎实而质朴,平淡中透新意.开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题,让课堂教学既有“深度”,又有“温度”。)

  四、反思

  这节课你有什么收获?印象最深的是什么?

  (设计说明:通过回顾,引导学生对本节课学到的知识和方法进行总结,让学生亲身感受到数学学习是有意义的。)

  五、课后作业

  练习六第6、7题。

倒数的认识教案12

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的.分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1。2 0

  学生独立完成,然后交流。

倒数的认识教案13

  一、 教学内容:

  九年义务教育六年制第九册第二单元《倒数的认识》

  二、 教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的,数学教案-倒数的认识。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、 教学目标:

  1.理解倒数的意义,掌握求倒数的方法。

  2.能熟练地写出一个数的倒数。

  3.结合教学实际培养学生的抽象概括能力。

  四、 教学重点

  理解倒数的意义,掌握求倒数的方法。

  五、 教学难点

  熟练写出一个数的倒数。

  六、 教学过程:

  (一)、 谈话

  1.交流

  师: 我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么关系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存关系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存关系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1.学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数

  师:4是3的4/3,

  生:3是4的 3/4

  师:7是15的7/15; 生:15是7的15/7。

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的.两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:

  (1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习

  (1)出示卡片 (六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0.4

  小组讨论 指名板演

  提问:1.你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置,小学数学教案《数学教案-倒数的认识》。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2.你是怎么找出7/4的倒数的?

  提问: 我们怎样才能很快地找到一个数的倒数?为什么?

  4.练习 请剩下的没有找到朋友的同学继续找倒数

  5.讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6.完善求一个数的倒数的方法

  三、 巩固练习

  (一)填空

  1.因为5/3*3/5=1,所以()和()互为();

  2.因为15*1/15=1,所以()和()互为 ();

  3.4/7与()互为倒数;

  4.()的倒数是6/11

  5.()的倒数是2

  6.1/8的倒数是()

  7.1/2/7的倒数是()

  8.0.3的倒数是()

  (二)判断

  1.得数是1的两个数互为 倒数。()

  2.互为倒数的两个数乘积一定是1。()

  3. 1的倒数是1,所以0的倒数是0 。()

  4.分数的倒数都大于1。()

  (四)思考

  4/5*()=()*8

  四、总结

  今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  五、 布置作业

  简评:

   一、自主学习中让学生勇于创新

  新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

  二、在游戏活动中实现新知的推进

  游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

倒数的认识教案14

  学习目标:

  一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

  二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

  三、激情投入,挑战自我。

  教学重点:求一个数倒数的方法。

  教学难点:1和0倒数的问题。

  教学设计:

  离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)

  就先聊到这儿吧?好,上课!

  一、导入:

  同学们,在上数学课之前,老师想考你一个语文知识,怎么样?(出示杏和呆)看到这两个字,你发现了什么?

  生:上下两部分调换了位置,变成了另一个字

  师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

  师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?

  二、合作探究:

  (一)揭示倒数的意义

  1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

  请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

  师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

  师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。

  你认为哪些字或词比较重要?你是如何理解互为的?你能用举例子的方法来说明吗?(生答)

  师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说老师是你的朋友,你是老师的朋友,我们俩是双方面的。

  (二)小组探究求一个倒数的方法

  1.出示例题2课件:下面哪两个数互为倒数?

  师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

  出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

  提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

  师板书:求倒数的方法: 分数的分子、分母交换位置

  同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

  2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

  3.出示课件想一想。

  我的发现:1的倒数是(1),0(没有)倒数。

  师提问:(1)为什么1的倒数是1?

  生答:(因为11=1根据乘积是1的两个数互为倒数,所以1的倒数是1)

  (2)为什么0没有倒数?

  生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

  4.探讨带分数、小数的倒数的求法

  师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。


它的倒数




求这一类数的倒数的方法





带分数




2






小数




0.2






1.75






  你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

  (师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

  当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

  发现1:带分数的倒数都(小于)本身;

  发现2:比1 小的'小数的倒数都(大于)本身,并且都(大于)1。

  发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

  (三)学以致用:

  师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

  1.想不想检验一下自己学的怎么样?

  请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

  2.(课件出示)请你以打手势的形式告诉老师你的答案。

  (四)全课总结

  今天学习了什么?我们一起回顾总结出来好吗?

  《倒数的认识》教学反思:

  本节课一开始创设让学生找朋友的情境,通过此活动帮助学生理解互为的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

  本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。

  倒数的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对倒数的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

倒数的认识教案15

  教学内容:

  教材P24页中的例1、例2 ,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  概括倒数的意义,掌握求倒数的方法。

  教学难点:

  理解“互为”、“倒数”的含义以及0、1的倒数。

  教学方法:

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  课 型:新授课。

  教学过程:

  一、游戏激趣,揭示课题。

  1、理解“互为”的含义。

  朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他

  们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——

  (父子关系、母女关系等)

  2、简单理解“倒”。

  师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。

  板书:

  3

  8× 8

  3= 1 7

  15×15

  7=15×= 151112 ×12= 1

  二、新课教学。

  (一)引导质疑。

  学生算完后,观察并思考:这些题有什么共同的地方?

  生1:得数是1 生2:乘积是1

  除了乘积是一,因数还有什么特点(分子分母交换位置)

  师再举例如: 5/4×4/5 7/10×10/73×1/3

  进一步明确并(板书):乘积是1

  生3:都是两个数相乘. 〈 板书 〉:两个数

  1、 你们还能写出两个数乘积是1的算式吗?

  那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)

  出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。

  师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?

  比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。

  生:①模仿说 ②同桌互说

  2、理解意义:

  (1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?

  (互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)

  倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  (2)以前我们学过这种两数间相互依存关系的知识吗?

  (3)2/5和5/2的积是1,我们就说??(生齐说)

  (4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的`同

  (5)辨析:下面的说法对吗?为什么?

  A:2/3 是倒数。( )

  B:得数为1的两个数互为倒数。( )

  C、

  D、12712和×43712乘积是1 ,所以32127和32712互为倒数。( ) ×=1,所以12、43、互为倒数。 ( )

  3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  (二) 探索求一个倒数的方法

  1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)

  根据这一特点你能写出一个数的倒数吗? 试一试!

  2、写出下列各数的倒数:3/5 7/2 5 13

  (1)先写3/5的倒数。教师查看学生书写的情况。

  (2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示

  3/5 的倒数是( ) 7/2 的倒数是( )

  5 的倒数是( ) 13 的倒数是( )

  师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)

  师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。

  3、1和0的倒数

  师:那1 的倒数是几呢?为什么?

  0的倒数呢?

  师:为什么?

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)

  4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。

  三、练习巩固。

  1、判断题:

  ①互为倒数的两个数,乘积是1。 ( )

  ②任何假分数的倒数是真分数。 ( )

  ③因为3×1/3=1,所以3是倒数。 ( )

  ④1的倒数是1。 ( )

  2、思考题:

  3/8×( )=( )×=( )×6=1

  3、找出马小虎的日记错误并改正。

  今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  四、全课小结

  同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。

  五、作业

  课本26页第4题。

  六、板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,

  若是整数,先划成分母是1的分数。

  1的倒数还是1,0没有的倒数。

【倒数的认识教案】相关文章:

倒数的认识教案02-11

倒数的认识教学反思07-04

六年级数学教案:倒数的认识06-02

《倒数》的教学反思05-25

大班顺数倒数数学教案07-22

《认识左右》教案03-27

《认识自己》教案07-14

认识圆形教案07-24

数的认识教案07-24