一元一次方程教案
作为一名教职工,就不得不需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?以下是小编收集整理的一元一次方程教案,希望对大家有所帮助。
一元一次方程教案1
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用。学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到方程的数学思想方法。总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法。而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定找出已知量与未知量之间的关系,尤其是相等关系为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。
二、教学目标分析
(一)知识技能目标
1。目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性。
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。
2。目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径。
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力。
(二)过程目标
1。目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识。
2。目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。
(三)情感目标
1。目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。
(2) 通过对实际问题的解决,进一步体会数学来源于生活,且服务于生活的辩证思想。
2。目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切。利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键。
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ)。根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果。课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1。问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际。
(2) 据此生活实例,展示探究Ⅰ,引入新课。
考虑到学生不完全明白盈利、亏损这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ。
2。讨论交流
(1) 学生结合自己的生活实际,交流对盈利、亏损含义的理解。
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由。在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识。
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价。
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫。
3。建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系。
(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价。
(3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况。
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策。这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成。这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得
实际问题与一元一次方程探索富有成效的学习体验。
4。小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断。
培养学生科学的学习态度与严谨的学习作风。
探究Ⅱ
(三)教学过程Ⅱ
1。在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突。
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性。
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2。列代数式
费用=灯的售价+电费
电费=0。5灯的功率(千瓦)照明时间(时)
在此基础上,用t表示照明时间(小时)。要求学生列出代数式表示这两种灯的费用。
节能灯的费用(元):60+0。50。011t。
白炽灯的费用(元):3+0。50。06t。
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础。
3。特值试探 具体感知
学生分组计算:
t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
20xx
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
学生填完表格后,展示由表格数据制成的条形统计图。
引导学生讨论:从统计图表,你发现了什么?
问题的答案是多样的,师生共同得出:照明时间不同,作出的选择不同。
由于在前面的第二节,学生已经学过两种移动电话计费方式的一道例题,因此学生应该能较熟练地完成表格中的特值试探。又因为七年级学生的认知以直观形象为主,再给出统计图,完成特殊到一般,感性到理性的深化。
4。方程建模
观察统计图,你能看出使用时间为多少(小时)时,这两种灯的费用相等吗?
列出方程:
60+0。50。011t=3+0。50。06t
5。合作交流 解释拓展
(1) 照明时间小于2327小时,用哪种灯省钱?照明时间超过2327小时。但不超过3000小时,用哪种灯省钱?
学生分组讨论,交流各自的看法。
(2) 如果计划照明3500小时,则需购买两个灯,设计你认为合理的选灯方案。
学生分组、讨论购灯方案只有三种:①两盏节能灯;②两盏白炽灯;③一盏节能灯、一盏白炽灯。
学生计算各种方案所需费用。
关于选灯方案③,学生可能会有不同的结果,先让学生充分展示他们的计算理由,然后对学生得出使用节能灯3000小时,白炽灯500小时的结论,给予充分肯定,并引导学生寻找理论依据,列式验证:
设节能灯的照明时间为t(小时),那么总费用为:
60+3+0。50。011t+0。50。06(3500—t)=168—0。0245t(03000)
观察上式可看出,只有当t=3000时,总费用最低。
培养学生合作交流,倾听他人意见,并从交流中获益的学习习惯,综合各方面信息的能力。讨论2需要考虑的情形不只一种,通过这一问题,培养分类讨论的思想,养成缜密的思维品质。此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验。
6。反馈练习
一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:
(1) 什么情况下,购会员证与不购证付相同的.钱?
(2) 什么情况下,购会员证比不购证更合算?
(3) 什么情况下,不购会员证比购证更合算?
适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构。
(四)教学小结
学生分组小结本课学到了什么,各组发言交流体验、教师总结:
五、设计说明
七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切。因此我从以人为本的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力。
(一)充分尊重学生的主体地位
发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程。
(二)树立方程建模思想
突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识。
(三)注重对学习过程与方法的评价
关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展。
(1) 某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元。问这种商品的定价为
实际问题与一元一次方程探索多少元?
(2) 某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5。6%)在明年的元旦付清,该洗衣机售价是每台8 224元,若两次付款相同,问每次应付款多少元?
(3) 工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?
(4) 一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离。
(5) 甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30 800元,问甲、乙两人可获利润多少元?
(6) 有人问老师班级有多少名学生时,老师说:一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球。你知道这个班有多少名学生吗?
(7) 某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?
综合运用
4。某市居民生活用电基本价格是每度0。40元,若每月用电量超过a度,超出部分按基本电价的70%收费。
(1) 某户五月份用电84度,共交电费30。72元,求a;
(2) 若该户六月份的电费平均为每度0。36元,求六月份共用电多少度?应交电费多少元?
5。为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按0。45元/吨收费;超过10吨而不超过20吨部分,按0。80元/吨收费;超过20吨部分,按1。5元/吨收费。现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?
6。一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进。突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。你知道这名队员从离队到与队员重新会合,经过了多长时间吗?
7。有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时。这8名同学都能赶上火车吗?
拓广探索
8。一家庭(父亲、母亲和孩子们)去某地旅游。甲旅行社说:如父亲买全票一张,其余人可享受半价优惠。乙旅行社说:家庭旅行算集体票,按原价的优惠。这两家旅行社的原价相同。你知道哪家旅行社更优惠吗?
一元一次方程教案2
教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。
3、培养学生获取信息,分析问题,处理问题的能力。
教学重点
列出方程,了解方程的概念;培养学生获取信息,分析问题,处理问题的能力。
教学难点
从实际问题中寻找相等关系
学情分析学生基础较好,求知欲强,思维活跃,有较好的接受能力,学生能够较为有条理的思考.学生在小学时初步学习了方程的定义,通过前一章整式的学习,能够判断多项式的项系数和次数,对认识方程有了很好的铺垫,只需要把方程、多项式的项的系数和次数合理的加以利用和约束便会得到方程。
学法指导根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程意义,培养学生抽象概括等能力。
教学过程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见
一、创设情景,导入新课
小彬,我能猜出你年龄。你的年龄乘2减5得数是多少?
21他怎么知道的我年龄是13岁的'呢?
创设学生熟悉的感兴趣的问题情境,能激起学生学习的兴趣和热情,并进一步回顾掌握小学已学过的方程的概念和列方程。也为下面一元一次方程的概念建构做好准备,引出课题1.学生用已有知识列算式和方程完成
2.鼓励学生观察、归纳自我建构新的概念--方程
1.学生不能正确的找出等量关系
老师引导学生完成:
利用这个问题让学生找等量关系,为下面作铺垫,做好新旧知识的衔接。
二.学生成果展示:
先鼓励学生进行观察与思考,并用自己的语言进行描述,然后学生进行交流。教师在学生发言的基础上,给出一元一次方程的概念,并进行适当的讲解。
观察你所列的方程,这些方程之间有什么共同的特点?
在老师帮助下能完成
老师总结补充
列方程解决实际问题再一次让学生感觉方程的优越,提高学生主动利用方程的意识。
三.新课学习在学生对概念有了初步的印象后,紧接着给出几个式子让学生判断,为的是增强学生的判断能力和对概念的认识。练习有梯度、有层次。最后总结提出:
在原有方程概念的基础上,鼓励学生观察、归纳自我建构新的概念——方程。
像这样含有未知数的等式叫做方程。
定义不完整
通过交流让学生用自己的语言表达,提高学生的语言表达能力
四.学一学
判断下列式子是不是方程,正确打“√”,错误打“x”.
(1)1+2=3
(2)1+2x=4
(3)x+1-3
(4)x+2≥1
(5)x+y=2
(6)x2-1=0
小组间交流.完成后与小组同学交流,说说你判断的原因
根据上面所判断的方程很容易找到其中的共同点,从而能顺利的引出方程的概念,进而乘胜追击,给出梯度问题,判断给出的是否是方程,巩固学生对概念的理解,引起学生对方程要素的有意注意,加深学生的印象。
五.做一做
判断下列各式是不是方程,是的打“√”,不是的打“x”。
(1)-2+5=3
(2)3χ-1=0
(3)y=3(4)χ+y=2
(5)2χ2-5χ+1=0(6)χy-1=0
(7)2m-n
(8)S=πr2
学生独立完成练习目的是让学生体会方程的思想可以渗透到生活中的各个领域。设计练习的目的是培养学生的团结合作的意识,激发学生潜能,增强学生集体荣誉感,进而达到本课情感升华。
六.情景引入:教师提出教科书第79页的问题,同时出下图:
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
问题1:从上图中你能获得哪些信息?
问题2:你会用算术方法求出王家庄到翠
问题3:能否用方程的知识来解决这个问题呢?湖的距离吗
通过对这道题的探索得出来列方程的一般步骤:
七.读一读,理解一下
比较列算式和列方程两种方法的特点.
列算式:只用已知的数,表示计算程序,依据问题中的数量关系;
列方程:可用已知数和未知数,表示相等的关系,依据是问题中的等量关系.
从算式到方程是数学的一大进步。
你们是怎么得到的?
让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)
八.练习(1)列式表示:
①比a小9的数;②x的2倍与3的和;
③5与y的差的一半;④a与b的7倍的和
(2)根据下列条件,列出关于x的方程:
(1)12与x的差等于x的2倍;(2)x的三分之一与5的和等于6.
1、根据下列条件,用式表示问题的结果:
(1)一打铅笔有12支,m打铅笔有多少支?
(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
2.根据下列条件列出方程:
小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。独立完成
九.课堂小结
1.本节课我们学了什么知识?
2.2.你有什么收获?
板书设计
一元一次方程教案3
教学目标:
一、知识和技能:
㈠知识目标:
1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
㈡能力目标:
数学思考:能结合实际问题背景发现和提出数学问题。
解决问题:能利用一元一次方程解决商品销售中的一些实际问题
二、过程与方法:
经历“探究”的活动,激发学生的学习潜能,促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.
三、情感态度与价值观目标:
1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.
2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.
教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.
教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.
教学关键:明确问题中的数量关系,找出等量关系.
教学课型:新授课
课时安排:一课时
教学方法:启发式讲授,与学生探索相结合,情境教学法。
教学准备:幻灯片出示探究题目,三四个可供标价的纸板
教学过程:
一、引入新课
做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?) →→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。
(1)商品利润=商品售价-商品进价.
(2)商品利润率= .
(3)打x折的售价=原售价× .
二、新授
第一大部分
探究1:销售中的盈亏.
某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
①由学生借以往经验解决(极有可能使用四则运算),作出判断.
②要求应用方程
再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设
④学生自主修整完成该方程,进而解决问题.
解:设……………………
————————=——---
……………………
……………………
答:…………………….
另外:求出方程的解后,一定要检验解的合理性.
题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.
第一大部分附题
随堂练习1:
刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?
分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。
“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的`可以提示:什么的八折?省了15元是什么意思?
解:设……………………
————————=——---
……………………
……………………
答:…………………….
求出方程的解后,一定要检验解的合理性.
随堂练习2:较难的一道利润问题
某商品去年提价25%,今年要恢复原价,应下调几个百分点?
分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.
Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x
Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调
m个百分点.
Ⅳ
一元一次方程教案4
一。教学目标:
1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
2。能力目标:培养学生的运算能力与解题思路。
3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二。教学的重点与难点:
1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
三。教学方法:
1。教 法:讲课结合法
2。学 法:看中学,讲中学,做中学
3。教学活动:讲授
四。课 型:新授课
五。课 时:第一课时
六。教学用具:彩色粉笔,小黑板,多媒体
七。教学过程
1。创设情景:
今天让我们一起做个小小的游戏,这个游戏的'名字叫:猜猜你心中的她
心里想一个数
将这个数+2
将所得结果
最后+7
将所得的结果告诉老师
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:同学们知道老师是怎样猜到的吗?
同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。
2。探究新知:
一元一次方程的概念:
前面我们遇到的一些方程,例如 3
老师:大家观察这些方程,它们有什么共同特征?
(提示:观察未知数的个数和未知数的次数。)
(抽同学起来回答,然后再由老师概括。)
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?
再次强调特征:
(1)只含一个未知数;
(2)未知数的次数为1;
(3)是一个整式。
(注意:这几个特征必须同时满足,缺一不可。)
3。例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)
① ② ③
④ ⑤⑥
准确答案:①③
下面我们再一起来解几个一元一次方程。
例2。解方程
(1)
解法一:解法二:
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
(2)
解:
提示
1)。在我们前面学过的知识中,什么知识是关于有括号的。
2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。
3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。
4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
5)。一起回顾合并同类项的法则:未知数的系数相加。
6)。系数化为1,运用了等式的性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1。
4。巩固练习
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
5小结:和同学们一起回顾我们这节课学习了什么?
解一元一次方程
概念
含括号的一元一次方程的解法的解法
作业:1。P12 。1
2。预习下一节课的内容,
3。复习此节课的内容,并完成一下两道思考题。
思考:(1) 解方程: 。
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(2) 该怎么求解?
一元一次方程教案5
教学目标
1.理解等式的性质,并能应用等式性质解方程进行简单变形。
2.运用移项,系数化为1,解简单的一元一次方程。
教学重点 解简单的一元一次方程。 教学难点 移项的注意事项。 教 具 天平、砝码。
教学过程
一、设疑自探
1、情境引入:
用天平测量物体的质量时,常常将物体放在天平的左盘内,在右盘内放上砝码,使天平处于平衡状态,这时两边质量相等就可以测得该物体的质量。 教师按书本上操作要求演示,并将有关的方程变形的式子板书出来,供同学们观察。 教师归纳:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以发现天平依然平衡,如果我们将两边盘内的物体的质量,同时扩大原来相同的数额(或缩小原来的几分之一),也会看到天平依然平衡。
2、发散提问:
请你根据老师的演示和上面的式子提出一些问题,看谁提的问题好。 (学生可能提出的问题:第一个演示说明了什么、第一个演示有什么启示、第二个演示……、这些演示有什么启示、这些方程的变形中有什么一般的规则、你从这些方程的变形中发现了什么?观察这些方程的变形,你有什么发现?)
本节课我们学习6.2.1方程的简单变形。板书课题,并出示学习目标。
3、明确自探目标:
同学们提出的这些问题很有价值,我们下面就来探究有关的问题。出示自探提示。 同学们结合“自探提示”和同学们提出的问题,自学课本P5—6页,完成本节的自探提纲中的问题。
自探提纲 (1)从刚才的演示和方程的变形中,你发现了什么?
(2)等式的性质的.内容是什么?例1、例2分别是怎样应用等式性质解一元一次方程?
(3)移项的定义是什么?移项要注意什么?
(4)运用等式性质来解释移项、系数化为1的过程。
(5)下列方程变形不属于移项的是( ) A、由2x=6,得x:3 B、由5x=4x-2,得5x-4x=-2 C、由2y-5=y-3,得2y-y=-3+5 D、由x+a=b,得x=b-a
(6)解下列方程 (1)-5x=8 (2)1-3x=4 (7)若x、y满足|x-2|+|y+1|=0,则x、y的值为xx。
二、解疑合探
1、同学们逐题解答以上问题,学困生回答,中等生补充,优等生评价,教师做到“三讲三不讲”。
2、教师注意进行以下两方面引导:
(1)等式的性质易错点:性质1,可以加上(减去)同一个整式,性质2不能乘以(或除以)同一个整式(整式包括0)。
(2)同学们对自探提示中第6题进行演板,教师要规范解方程的过程。
三、质疑再探
同学们对本节学习有什么不懂地方或疑问大担提出。先由同学们回答,同学们回答不完整的内容,教师做补充。 注:本节第一节解方程,若涉及后面的内容,教师应告诉同学们后面将要学习。
四、运用拓展
1、同学们自编练习题,供同学练习,并纠错。
2、完成以下练习,并纠错。
(1) (2) (3) (4) (5) (6) (7) (8)
3、已知方程ax+2=2(a-x)的解满足|x-2|=1,则a: 以上三题,以学生纠错、评价为主。
4、课堂小结 同学们谈谈本节的收获。 通过交流、补充完善,使学生明确;
(1)数学思想:从天平到等式的性质,一般归纳的思想,方程思想。
(2)数学能力:等式性质的应用,即应用移项、系数化1解一元一次方程。
作业设计 必做题 习题P62一、1、2、3、4 选做题 习题P62三、3、4 教后反思:
一元一次方程教案6
学习
目标知识与能力:进一步掌握列一元一次方程解应用题的方法步骤.
过程与方法:通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.
情感态度与价值观:培养学生自主探究和合作交流意识和能力,体会数学的应用价值.
重点
难点重点:分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程,并会解方程.
难点:找出能够表示问题全部含义的相等关系,列出方程.
关键:找出能够表示问题全部含义的相等关系.
教学流程师生活动时间复备标注
一、复习引入:1.解方程:5X+2(3X-3)=11-(X+5)
2.行程问题中的基本数量关系是什么?
路程=速度×时间,可变形为:速度=.
3.相遇问题或追及问题中所走路程的关系?
相遇问题:双方所走的路程之和=全部路程+原来两者间的距离.(原来两者间的距离)
追及问题:快速行进路程=慢速行进路程+原来两者间的距离;或快速行进路程-慢速行进路程=原路程(原来两者间的距离)
二、新授:
例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,求船在静水中的平均速度.
分析:(1)顺流行驶的速度、逆流行驶的速度、水流速度,船在静水中的.速度之间的关系如何?
顺流行驶速度=船在静水中的速度+水流速度
逆流行驶速度=船在静水中的速度-水流速度
(2)设船在静水中的平均速度为x千米/时,由此填空(课本第97页).
(3)问题中的相等关系是什么?
解:一般情况下,船返回是按原路线行驶的,因此可以认为这船的往返路程相等,由此,列方程:
2(x+3)=2.5(x-3)
去括号,得2x+6=2.5x-7.5
移项及合并,得-0.5x=-13.5
系数化为1,得x=27
答:船在静水中的平均速度为27千米/时.
说明:课本中,移项及合并,得0.5x=13.5是把含x的项移到方程右边,常数项移到左边后合并,得13.5=0.5x,再根据a=b就是b=a,即把方程两边同时对调,这不是移项.
例3:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母20xx个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
分析:
已知条件:(1)分配生产螺钉和生产螺母人数共22名.
(2)每人每天平均生产螺钉1200个,或螺母20xx个.
(3)一个螺钉要配两个螺母.(4)为使每天的产品刚好配套,应使生产的螺母数量与螺钉数量之间有什么样关系?
螺母的数量应是螺钉数量的两倍,这正是相等关系.
解:设分配x人生产螺钉,则(22-x)人生产螺母,由已知条件(2)得,每天共生产螺钉1200x个,生产螺母20xx(22-x)个,由相等关系,列方程
2×1200x=20xx(22-x)
去括号,得2400x=44000-20xxx
移项,合并,得4400x=44000
x=10
所以生产螺母的人数为22-x=12
答:应分配10名工人生产螺钉,12名工人生产螺母.
本题的关键是要使每天生产的螺钉、螺母配套,弄清螺钉与螺母之间的数量关系.
三、巩固练习课本第102页第7题.
解法1:本题求两个问题,若设无风时飞机的航速为x千米/时,那么与例1类似,可得顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据顺风飞行路程=逆风飞行路程,列方程:
2(x+24)=3(x-24)
去括号,得x+68=3x-72
移项,合并,得-x=-140
系数化为1,得x=840
两城之间的航程为3(x-24)=2448
答:无风时飞机的航速为840千米/时,两城间的航程为2448千米.
解法2:如果设两城之间的航程为x千米,你会列方程吗?这时相等关系是什么?
分析:由两城间的航程x千米和顺风飞行需2小时,逆风飞行需要3小时,可得顺风飞行的速度为千米/时,逆风飞行的速度为千米/时.
在这个问题中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时的速度相等,根据这个相等关系,列方程:
-24=+24
化简,得x-24=+24
移项,合并,得x=48
系数化为1,得x=2448即两城之间航程为2448千米.无风时飞机的速度为=840(千米/时)
比较两种方法,第一种方法容易列方程,所以正确设元也很关键.
四、课堂达标练习
1.名校课堂59页3、4、7、
五、课堂小结:
通过以上问题的讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理,虽然不必写出检验过程,但这一步绝不是可有可无的.
六、作业:课本第102页习题3.3第5、题.
课件出示问题1:
教师引导,启发学生找出相等关系并列出相应代数式,从而得出方程
教师点拨进一步对此题进行巩固,培养学生归纳概括的能力
解答过程按课本,可由学生口述,教师板书.
一元一次方程教案7
教学
目标⒈通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
⒉通过观察,归纳一元一次方程的概念.
⒊体会解决问题的一种重要的思想方法——尝试检验法.
⒋理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程.
教学
重点利用等式的两个性质解一元一次方程.教学
难点一元一次方程的概念和用尝试检验法求方程的解
教学
方法教学
用具多媒体
教学过程
集体备课稿个案补充
一、创设情境,引入新课
kitty与小熊是一对好朋友!他们决定本月8号要去离家很远的'游乐场旅行……
问题1:今天是2号,再过几天是8号呢?
问题2:终于盼来这一天了。坐出租车到车站花了5元,又买了两张去游乐场的车票,总共花去了13元.去游乐场的每张车票要多少元?
问题3:门票的原价是多少?
大家一起来说一说!
同桌为一组,我们一起来找找这些方程有什么共同的特点
1、方程的两边都是整式2、只有一个未知数3、未知数的指数是一次。这样的方程叫做一元一次方程!!
二、讲授新课
1、问题4:1、kitty与小熊玩的第一种游戏射击(限一人射2次),第二次射击成绩是9环,问第一次是几环?
只取整数环
由已知得,x为自然数且只能取0,1,2,3,4,5,6.把这些值分别代入方程左边得。这种方法叫尝试检验法
x0123456
使方程左右两边的值相等的未知数的值叫做方程的解。
练习:判断下列t的值是不是方程2t+1=7-t的解:
(1)t=2(2)t=-2
2、课堂练习:见课件
3、小结:
4、作业:见作业本
一元一次方程教案8
教学目标
1、理解一元一次方程、方程的解等概念;
2、掌握检验某个值是不是方程的解的方法。
教学重点
寻找相等关系、列出方程.
教学难点
对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力
学情分析
学生基础较好,求知欲强,思维活跃,有较好的接受能力,学生能够较为有条理的思考.学生在小学时初步学习了方程的定义,通过前一章整式的'学习,能够判断多项式的项系数和次数,对认识一元一次方程有了很好的铺垫,只需要把方程、多项式的项的系数和次数合理的加以利用和约束便会得到一元一次方程。但是在实际问题中,根据实际情况列出式子,找相等关系,仍是学生需要加强的地方。
学法指导根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
教学过程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见
一、情境引入:
问题1、世界上最大的动物是蓝鲸。一只蓝鲸重124吨,比一头大象的体重的25倍少1吨。这头大象重几吨?
二、新课探究
三、例题讲解
四、集疑解难
五、达标检测
六.课堂小结
七、布置作业
1、(1)在等式y=kx中,当x=1时,y=2求k的值.
(2)在等式y=kx+b中,当x=0时,y=2;当x=-1时,y=0,求k、b的值.
2.在等式
中,要求a,b,c的值,需要知道几个条件?
3.例2.在等式中,当x=-1,y=0;当x=2,y=3;当x=5,y=60时,求,b,c的值.
分析:根据已知条件,你能得到什么?
如何解这个三元一次方程组呢?
(1)先消去哪个未知数?为什么?
(2)选择哪种消元方法,得到二元一次方程组?
1.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.
解:设甲为a,乙为b,丙为c,根据题意,组成以下方程组:
解这个方程组,得
老师指导
你有什么收获和体会?
习题8.4第5题
1、分析:(1)把x=1,y=2代入等式y=kx中,消去x、y得到关于k的一元一次方程,求出k值
(2)把x=0、y=2和x=-1时、y=0分别代入等式y=kx+b中,消去x、y得到关于k和b的二元一次方程组,求出k、b的值.
学生思考,小组讨论回答
解:根据题意,得三元一次方程组
②-①,得a+b=1④
④与⑤组成二元一次方程组
③-①,得4a+b=10⑤
根据题意列方程组得
解这个方程组,得
把代入①,得C=-5
因此a=3,b=-2,c=-5
学生独立完成:
(1)解三元一次方程组
(2)已知∣x-8y∣+2(4y-1)2+3∣8z-3x∣=0,求x+y+z的值.
(3)一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14.求这个三位数.
小组讨论,并回答
不知道如何把值代入,列为方程。
一元一次方程教案9
2.自主探索、合作交流:
先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:
解:方程两边都加上2,得5x-2+2=8+2
也就是5x=8+2
合并同类项,得5x=10
所以,x=2
3.理性归纳、得出结论
(让学生通过观察、归纳,独立发现移项法则。)
比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于
5x-2=8 5x=8+2
即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;
解:移项,得5x=8+2
合并同类项,得5x=10
方程两边都除以5,得x=2
4.运用反思、拓展创新
[例1]解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7
教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:
教学建议:
①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。这时,教士不要急于求成,而要引导学生反思自己的解题过程。必要时,可让学生利用等式的'性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:
学生谈本节课的收获与体会。师强调:移项法则。
一元一次方程教案10
学习目标
1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解
2. 会用一元一次方程解决工程问题
重点难点
重点:建立一 元一次方程解决 实际问题
难点:探究实际问题与一元一次方程的关系
教学流程
师生活动 时间
复备标注
一、 复习:
解下列方程:
1.9-3y=5y+5
2.
二、新授
例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?
分析:这里可以把总工作量看做1。思考
人均效率(一个人做1小时完成的工作量)为 。
由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。
这项工作分两 段完成,两段完成的工作量之和为 。
解:设先安排x人工作4小时。
根据两段工作量之和应是总工作量,得
.
去分母, 得 4x+8(x+2)=-1701
去括号,得 4x+8x+16=40
移项及合并同类项,得
12x=24
系数化为1,得 X=-243.
所以 -3x=729
9x=-2187.
答:这三个数是-243,729,-2187。
师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决
例4 根据下面的两种移动电话计费方式表,考虑下列问题。
方式一 方 式二
月租费 30元/月 0
本地通话费 0.30元/月 0.40元/分
(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?
解:(1)
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则
0.4t=30+0.3t
移项,得 0. 4t -0.3t =30
合并同类项,得 0.1t=30
系数化为1,得 t=300
由上可知,如果一个月内通话300分,那么两种计费方式相同。
思考:你知道怎样选择计费方式更省钱吗?
解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.
归纳:用一元一次方程分析和解决实际问题的基本过程如下
三、巩固练习:94页9、10
四、达标测试 :《名校》55页1.2.3.
五、课堂小结:
(1) 这节 课我有哪些收获?
(2) 我应该注意什么问题?
六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:
(1)每一步的依据分别是什么?
(2)求方程的解就是把方程化成什么形式?
先让学生读题分析规律,然后教师进行引导:
允许学生在讨论后再回答.
在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数
学生独立解方程方程的解是不是应用题的`解
教师强调解决 问题的分析思路
学生读题,分析表格中的信息
教 师根据学生的分析再做补充
学生思考问题
教师根据学生的解答,进行规范分析和解答
一元一次方程教案11
【教学目标】
知识与技能
1.理解一元一次方程及解的概念.
2.建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.
过程与方法
通过学生观察、独立思考等过程,培养学生归纳、概括的能力.
情感态度
培养学生由算术解法过渡到代数解法解方程的基本能力,渗透化未知为已知的重要数学思想.
教学重点
体会方程模型的重要性,了解一元一次方程的概念.
教学难点
正确理解方程作为实际问题的数学模型的作用.
【教学过程】
一、情景导入,初步认知
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用方程来解决呢?若能解决,怎样解?用方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们先来了解一下方程.
【教学说明】 引起学生的学习兴趣,激发学生的求知欲.
二、思考探究,获取新知
1.请你表示出下面两个问题中的等量关系.
(1)如图,甲、乙两站的高速铁路长1068,“和谐号”高速列车从甲站开出2.5h后,离乙站还有318,该高速列车的平均速度是多少?
(2)如图,这是一个长方体形的包装盒,长为1.2 ,高为1 ,表面积为6.8 2,这个包装盒的底面宽是多少?
问题(1)的等量关系是:已行驶的路程+剩余的路程=全长.设高速列车的平均速度是x /h,我们可以用含x的式子表示上述等量关系,即2.5x+318=1 068.
问题(2)的等量关系是:底面积+侧面积=表面积.若设包装盒的底面宽是 ,则等量关系可表示为:1.2××2+×1×2+1.2×1×2=6.8,即:2.4+2+2.4=6.8.
【教学说明】 引导学生分析问题,用文字表示题目中的等量关系式.再根据等量关系式列出式子.
2.观察所列出的两个等式,它们有什么共同特征?
【归纳结论】 我们把含有未知数的等式叫做方程.
像上面这样,把所要求的量用字母x(……)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程.
3.思考:对于2.5x+318=1 068,2.4+2+2.4=6.8方程,有几个未知数,每个未知数的次数是多少?
【教学说明】 组织学生进行全班交流,得出以上方程的特点是:(1)方程中不含分母或分母中不含未知数;(2)只含有一个未知数;(3)未知数的指数都是1.
【归纳结论】 只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程.
4.方程的解.
在方程x+5=8中,当x=3时,方程两边的值相等,我们就说x=3是方程x+5=8的解.
【归纳结论】 能使方程左右两边的值相等的未知数的值叫做方程的解.
【教学说明】 了解方程的解的含义;判断是否为方程的解的'方法:将解带入原方程,分别计算左边和右边,看是否相等,相等则为原方程的解.
三、运用新知,深化理解
1.教材P84例1.
2.下列方程中,是一元一次方程的是( B )
A.x2-4x=3 B.x=0
C.x+2= D.x-1=
3.下列方程中解是x=1的方程是( C )
A.2x-2=3xB.x+5=2x-4
C.3x-6=4x-7D.5x+2=4x-3
4.下列各数中是方程4x-5=7的解的是( B )
A.1 B.3 C.-3 D.4
5.某品牌电饭煲成本价为x元,销售商对其定价为350元,若按8折销售仍可获利15元,根据题意,下面所列方程正确的是( A )
A.350×0.8-x=15B.350×8-x=15
C.350×0.8=x-15D.350×8=x-15
6.以x=-3为解的方程是( D )
A.3x-7=2B.5x-2=-x
C.6x+8=-26D.x+7=4x+16
7.在下列方程中:①x+2=3,② -3x=9,③ =+ ,④ x=0,是一元一次方程的有 ③④ (只填序号).
8.已知方程(-2)x||-1+3=-5是关于x的一元一次方程,则= -2 .
9.若方程(2-1)x2-x+8=x是关于x的一元一次方程,求代数式2 006-∣-1∣的值.
解:由一元一次方程的定义可知:
2-1=0
=±1
当=1时,2 006-∣-1∣=2 006;
当=-1时,2 006-∣-1∣=-2 008.
10.检验下面方程后面括号内所列各数是否为这个方程的解.
2(x+2)-5(1-2x)=-13,{x= -1,1}
解:将x=-1代入方程的两边得
左边=2(-1+2)-5[1-2×(-1)]=-13
右边=-13
因为左边=右边,所以x=-1是方程的解.
将x=1代入方程的两边得
左边=2(1+2)-5(1-2×1)=11
右边=-13
因为左边≠右边,所以x=1不是方程的解.
11.建立下列各问题中的方程模型.
(1)小明去商店买练习册,回来后告诉同学:“店主告诉我,如果多买些就可以享受8折优惠,我就买了20本,结果总共便宜了1.6元,你猜原来每本练习册的价格是多少元?”
解:设原来每本练习册的价格为x元
20(1-80%)x=1.6
(2)张强与刘伟参加植树活动,两人共植树75棵,其中张强比刘伟多植了15棵树.那么刘伟植了多少棵树?
解:设刘伟植了x棵,则可列方程
x+15+x=75
(3)甲队有32人,乙队有28人,现在从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍.问应该从乙队抽调多少人?
解:设应该从乙队抽调x人.则可列方程
32+x=2×(28-x)
(4)某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时,不但完成任务,而且还多生产60件,问原计划每小时生产多少个零件?
解:设原计划每小时生产x个零件,则所列方程为
12(x+10)=13x+60
【教学说明】 对本节知识进行巩固练习.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
【课后作业】
布置作业:教材“习题3.1”中第2、3题.
一元一次方程教案12
教学目标:
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
3、进一步体会找等量关系,会用方程表示简单实际问题。
4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。
教学重点:
一元一次方程及方程的解。
教学难点:
寻找问题中的相等关系,列方程。
学习过程:
回顾旧知:方程的概念是什么?
问题1:鸡兔同笼
“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)
问题2:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的速度是70km/h,卡车的速度是60km/h,客车比卡车早1小时到达B地,A、B两地间的路程是多少?(客车与卡车之间的时间关系解题)
1、用等号“=”来表示相等关系的式子,叫等式。
2、像这样含有未知数的等式叫做方程
判断:下列各式是不是方程:
(1)-2+5=3 ;
(2)3x-1=0;
(3)y=3;
(4)x+y>2;
(5)2x-5y+1=0;
(6)xy-1=0;
(7)2m-n;
探究新知;
例1根据下列问题,设未知数并列出方程
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设正方形的边长为x cm,然后发现相等关系:
4×边长=周长
可以利用这个相等关系,得到方程:4x=24
(2)设x个月后这台计算机的使用时间达到规定的检修时间2450小时,得到方程:1700+150x=2450
(3)设这个学校有x名学生,那么女生数就是0.52x,男生数是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80观察上面三个方程有什么共同特点:
①只含有一个未知数;
②未知数的最高次数都是1。
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?
(1)2x+3y-1;(2) x2+2x+1=0;(3)x+2y=3;
(4)1-x=x+1;(5)x2+3=4;
(6)x+y=5;(7)1+7=15-8+1;
(8)2χ2-5χ+1=0做一做:
x=1000和x=20xx中哪一个是方程0.52x-(1-0.52)x=80的`解?
方程的解:使方程左右两边相等的未知数的值。检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算,
3.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是.
练一练:
请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?
(1)t=-2(2)t=2 (3)t=1
练习提高:
根据下列问题,设未知数,列出方程:
1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?
2、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,问各买了多少支?
3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。 小结:
1、方程的概念
2、一元一次方程的概念
3、方程的解的概念
一元一次方程教案13
教学目标:
1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。
2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。
3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。
教学重难点:
重点:解一元一次方程的基本步骤和方法。
难点:含有分母的一元一次方程的解题方法。
教学过程:
一、新课导入:
请同学们和老师一起解方程:
并回答:解一元一次方程的一般步骤和最终的目的是什么?
二、讲授新课
请给同学们介绍纸草书(P95)。
问题:一个数,它的三分之二,它的`一半,它的七分之一,它的全部,加起来总共是33.试问这个
数是多少?
并引入让同学运用设未知数的方法,列出相应的方程。
并回答:这个方程和我们以前学习的方程有什么不同?
同学们和老师一起完成解上述方程,并引入去分母。
例1、
例2、
活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?
看一看你会不会错:
(1)解方程:
(2)解方程:
典型例题:解方程:
想一想:去分母时要注意什么问题?
(1)方程两边每一项都要乘以各分母的最小公倍数
(2)去分母后如分子中含有两项,应将该分子添上括号
选一选:
练一练:当m为何值时,整式和的值相等?
议一议:如何解方程:
注意区别:
1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。
2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。
课堂小结:
(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。
有没有疑问:不是最小公倍数行不行?
(2)去分母的依据是什么?
等式性质2
(3)去分母的注意点是什么?
1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。
2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。
(4)解一元一次方程的一般步骤:
布置作业:P98,习题3.3第3题
补充作业:解方程:
(1)
(2)
板书设计:
教学反思:
一元一次方程教案14
每一门功课都有它自身的规律,有它自身的特点,数学当然也不例外。下面是有关七年级上册数学第五章知识点的内容,供你学习参考!
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的'解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax=b(a0)形式)
5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba).
六、用方程思想解决实际问题的一般步骤
1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.、设:设未知数(可分直接设法,间接设法)
3、列:根据题意列方程.
4、解:解出所列方程.
5、检:检验所求的解是否符合题意.
6、答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1、和、差、倍、分问题:
(1)倍数关系:通过关键词语是几倍,增加几倍,增加到几倍,增加百分之几,增长率来体现.
(2)多少关系:通过关键词语多、少、和、差、不足、剩余来体现.
2、等积变形问题:
等积变形是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4、数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示.
5、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率工作时间
6、行程问题:
(1)行程问题中的三个基本量及其关系:路程=速度时间.
(2)基本类型有
①相遇问题;
②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7、商品销售问题
有关关系式:
商品利润=商品售价商品进价=商品标价折扣率商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价折扣率
8、储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵利息=本金利率期数
本息和=本金+利息
利息税=利息税率(20%)
一元一次方程教案15
教学目标
1、使学生能根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法,;
2、培养学生分析问题,解决实际问题的能力;
3、让学生在实际生活问题中,感受到数学的价值。
教学难点 让学生知道商品销售中的盈亏的算法。
知识重点 弄清商品销售中的进价标价售价及利润的含义。
教学过程(师生活动)设计理念
引言前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程。本节开始,我们将进一步探究如何用一元一次方程解决生活中的一些实际问题。利用一元一次方程解决实际问题前面已有所讨论,本节承上启下,进一步探究用一元一次方程解决生活中的实际问题。
引例①某商品原来每件零售价是元,现在每件降价 ,降价后每件零售价是 ;
②某种品牌的彩电降价 以后,每台售价为 元,则该品牌彩电每台原价应为 元;
③某商品按定价的八折出售,售价是 元,则原定价是 ;
④某商场把进价为1980元的商品按标价的八折出售,仍获利 ,则该商品的标价为 ;
⑤我国政府为解决老百姓看病问题,决定下调药品的价格,某种药品在1999年涨价30%后,20xx降价70%至 元,则这种药品在1999年涨价前价格为 元。学生对进价、标价、售价、打折等商品销售中的一些概念的含义已有一定的知识积累,通过引例,使学生在已有的知识经验基础上引入新课。
提出问题
探究新知问题(教科书93页探究1):某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利还是亏损?或是不盈不亏?通过实际生活中的实例,用问题的形式来探究新课内容,使学生感受数学来源于生活,生活中需要数学。
讨论交流解决问题①引导学生大体估算盈亏情况;
②教师提出问题,学生自主讨论解决;
(1)商品销售中的盈亏如何计算?
(2)两件衣服的`进价、售价分别是多少?
③得出结论后,将结论与学生先前的估算进行比较;
④教师归纳解决问题的大致过程。先由学生估算(培养学生敏感意识)然后通过师生合作交流,学生自主探索,得出结论,让学生品尝成功的喜悦。
巩固练习由学生自主探索解决。
问题:我国股市交易中每天、卖一次各交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为多少?
巩固本课中商品销售盈亏的求法,再次使学生感受到数学的应用价值。
小结与作业
课堂小结通过以下问题引导学生小结:
①由学生谈谈本节课学到了哪些知识?学后有何感受?
②商品销售中的基本等量关系有哪些?由学生概括本课中学到的知识,体现学生是学习的主人。
布置作业必做题:教科书97面习题2.4第2、3、4题;
备选题:
①某商品的进价是1000元,售价为1500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品;
②一年定期的存款,年利率为 ,到期取款时须扣除利息的20%,作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息多少元?
③某商场将某种DVD产品按进价提高35%,然后打出九折酬宾,外送50元打的费的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?
④某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了件,为进一步扩大市场,该企业决定在降低销售的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本应降低多少元?
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课以学生已有的知识经验和生活中的实例入手引入新课,在新授过程中,以学生为学习的主人教师进行适当引导、点拔、启迪。在学生的自主探索、合作交流过程中弄清商品销售中的盈亏的算法。加法对进价标价售价及利润的实际意义的理解。使学生深切感受到数学生活实际中的应用。从而激发他们学习数学的兴趣。另外学生通过对新授问题的估算,最后计算得出正确的结论,品尝到成功的喜悦,从而也激发了学生探求知识的欲望。
【一元一次方程教案】相关文章:
解一元一次方程教案11-02
一元一次方程教学反思07-02
一元一次方程的教学反思02-23
一元一次方程的教学反思07-22
一元一次方程《去括号》的教学反思02-21
解一元一次方程去括号教学反思04-22
教案06-23
关于教案模板 教案模板案例02-03
大班安全教案大班《安全》教案10-23