《数学广角》教案

时间:2024-07-22 10:33:32 教案 我要投稿

《数学广角》教案

  作为一位杰出的教职工,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的《数学广角》教案,希望能够帮助到大家。

《数学广角》教案

《数学广角》教案1

  教学内容:

  义务教育课程标准实验教科书四年级下册第117——118页例题1及相应的“做一做”。

  教学目标:

  1.通过教学初步培养学生“从特殊到一般”的思维方法,使学生在动脑、动口、动手的活动中掌握利用特殊的数量关系思考和解答一些实际问题的方法。

  2.培养学生观察事物的能力、操作能力以及与人合作交流的能力。

  教学过程:

  一、引入新课

  解决问题:

  1.出示题1:“四(1)班有8组,每组6人,一共有几人?”要求学生解答。然后教师指出:解决问题就是根据“数量关系”来解实际问题。

  2.出示题2:

  (1)“方娟同学在第3小组,她前面有3名同学,她后面也有3名同学,问第3小组共有几名同学?”(现场表演)

  (2)一根绳子要剪成3段,需剪几下?(现场操作)

  学生回答后,教师:有些实际问题要用特殊的数量关系来解答。

  板书课题:数学广角(一)——用特殊数量关系解答的一些实际问题

  [反思:从课题的复习开始,教师就注意抓住学生在解答时较易出错实际问题(前一道容易答“共有6名同学”,后一道容易误答为“要剪3下”)来引入新课,这有利于激发学生思维的积极性及思维的准确性,为后面的学习作了有效的捕垫。]

  二、讲授新课

  (一)准备知识:

  1.下面的每两个“○”中间摆一个“△”,每行要摆几个“△”?

  (1)○ ○

  (2)○ ○ ○

  (3)○ ○ ○ ○

  (4)○ ○ ○ ○ ○

  (5)○ ○ ○ ○ ○ ○

  ①指名一学生在黑板上演板,其余学生以小组为单位在练习本上试画。

  ②引导学生观察填空:

  各小题有()个“○”,中间摆了()个“△”。

  ③引导学生找出规律:“△”的个数总是比“○”的个数少一个。

  ④运用规律回答:如果有9个“○”,要摆几个“△”?12个“○”呢?

  ⑤教师:两个相邻“○”之间的部分称为一个“间隔”,有几个“间隔”就可以摆几个“△”。概括得出:间隔数=物体的总数量-1。

  2巩固规律:.口答

  ①五个手指之间有几个间隔:如果每两个手指之间都夹一支粉笔(表演),可以夹几支?两个手指之间都夹两支呢?

  ②我们班一组有7个同学,1、3、5、7号同学站起来后,问:坐下的有几人?(现场表演)

  [反思:善于运用“现场表演”的方法来增强学生的感性认识,为学生的理性认识作了铺垫和准备。同时这种表演形式因为有学生的参与,使得学生更加专注于听讲和思考,因而取得了良好的教学效果。]

  (二)教学例1:同学们在全长100米的小路一边植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  1.引导分析:

  ①问: 100米 里有几个 5米 ?100÷5=20(个)。准备20棵树苗够吗?

  ②看图帮助理解: 100米 里共有20个 5米 ,实际上就是有20个间隔。

  100米

  5米 一个间隔共有20个间隔

  ③得出结论:20个间隔,应该要栽20+1=21(棵)树。

  2.学生列式计算:

  教师根据学生列式完成下列板书:

  间隔数

  ↑

  100÷5+1

  ↓

  应栽树的棵数

  =20+1

  =21(棵)

  答:一共需要21棵树苗。

  (三)即时训练,课本第118页“做一做”:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  1.引导分析:

  ①设问:如果在每两棵树之间插一面小旗,一共要插几面小旗:(36-1=35面)

  ②全班交流:(重点让学生理解“36-1=3 5” 实际上就是表示间隔数。)

  ③得出结论:36棵树之间有几个间隔?(35个)

  2.学生列式计算:

  教师根据学生的`计算完成下列板书:

  树的棵数

  ↑

  6×(36-1)

  ↓

  间隔数

  =6×35

  =210(米)

  答:从第一棵到最后一棵的距离有210米。

  三、巩固练习:

  1.联系实际练习:一栋6层楼房,每两层之间有22级楼梯,一共有多少级楼梯?

  2.看谁算得又对又快:

  (1)1+2+1=

  (2)1+2+1+2+1=

  (3)1+2+1+2+1+( )+( )=

  (4)1+2+1+2+1+2+1+……+2+1=

  50个“ 1”

  (通过(1)——(3)的练习,引导学生发现数字的排列规律,做(4)时,先要求学生说出题中共有的特性,然后计算:1×50+2×49=148)

  [反思:巩固练习3、4设计得比较巧妙,既紧扣本课所学内容,又能注意适当的变化,始终使学生保持较高的学习兴趣,从而在愉悦中获取知识,获得用特殊的数量关系解答某些实际问题的能力。]

  四、:

  在解决问题时,要看清题目,做到具体问题具体分析。今天所学的特殊数量关系仅限于某些实际问题的解答,还有很多实际问题需要用另外的特殊数量关系来解答,这有待我们今后进一步学习和探讨。

  [反思:有针对性和拓展性,使人感到余音缭绕,比起那种戛然而止的做法更有效,而且有利于开拓学生的思维,拓宽学生的视野。]

《数学广角》教案2

  一、教学内容

  抽屉原理。

  二、教学目标

  1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2.通过“抽屉原理”的灵活应用感受数学的魅力。

  三、具体编排

  1.例1及“做一做”。

  例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。

  教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

  “做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。

  2.例2及“做一做”。

  本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。

  教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。

  “做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。

  3.例3。

  例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。

  教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。

  四、教学建议

  1. 应让学生初步经历“数学证明”的过程。

  在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

  2. 应有意识地培养学生的“模型”思想。

  “抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。

  3. 要适当把握教学要求。

  “抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。

  五年级数学上册同步单元试卷:第七单元数学广角(4)

  五年级数学上册同步单元试卷:第七单元数学广角(4)

  五年级数学上册同步单元试卷:第七单元数学广角(1)

  五年级数学上册同步单元试卷:第七单元数学广角(1)

  五年级数学上册同步单元试卷:第七单元数学广角(2)

  五年级数学上册同步单元试卷:第七单元数学广角(2)

  五年级数学上册同步单元试卷:第七单元数学广角(3)

  五年级数学上册同步单元试卷:第七单元数学广角(3)

  苏教版六年级数学——第十单元 第五课时 应用广角

  教学内容:第119页的应用广角,第27~31题,及自我评价

  教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。

  2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。

  教学过程:

  一、应用广角

  1、问:你在生活中发现过哪些数学问题吗?

  你能运用所学的数学知识和方法解决这些问题吗?

  2、完成第27题

  (1)课前预先布置学生按要求去调查

  (2)课上,让学生分组汇报调查得到的数据

  学生根据数据计算,完成填空

  (3)分析:从这些信息中,你们知道了什么?

  用百分数或比表示相关的信息有什么好处?

  3、完成第28题

  收集一些用百分数或比表示的信息,在小组里交流

  4、完成第29题

  根据本校一年级的'班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。

  全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。

  5、完成第30题

  (1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板

  读题,思考:剪去的每个正方形的边长应该是几厘米?

  (2)学生动手剪一剪、折一折

  找一找:这个纸盒的长、宽、高各是多少?

  (3)算一算:

  制作这个纸盒用了多少硬纸板?

  这个纸盒的容积是多少立方厘米?

  6、完成第31题

  学生先独立思考,再全班交流

  二、自我评价

  1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。

  2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。

  3、在学习中,你觉得自己又有了哪些收获和进步?还有什么地方也有所欠缺,需要改进和努力的?

《数学广角》教案3

  一、教学目标

  1.使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

  2.使学生在解决实际问题的过程中体会等量代换的思想。

  二、教学内容

  和前几册教材的思路相同,本册教材除了在有关单元渗透相应的数学思想方法以外,还专门安排了“数学广角”这一单元来介绍一些数学思想方法,使学生运用这些数学思想方法来解决一些简单的实际问题或数学问题。本单元主要是结合实际,使学生初步体会集合(例1)和等量代换(例2)两种数学思想方法。

  1.集合思想是数学中最基本的思想,甚至可以说,集合理论是数学的基础。从学生一开始学习数学,其实就已经在运用集合的思想方法了。例如,学生在学习数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类思想和方法实际上就是集合理论的基础。

  本单元的例1就是借助学生熟悉的题材,渗透集合的有关思想,并利用直观图的方式求出两个小组的总人数。

  2.等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。

  例2就是通过解决一些简单的问题,使学生初步体会等量代换的思想方法,为以后学习简单的代数知识做准备。

  三、具体编排

  1.例1。

  本例首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。这时,教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。

  教学时,可以先让学生根据统计表说出两个课外小组各有多少人,再说出三(1)班共有多少人参加了这两个课外小组。在求总人数时,学生既可以直接点数,也可以进行计算。让学生通过讨论发现:统计表中的前三位学生既参加了语文小组又参加了数学小组,所以是重复的,在计算总人数时只能计算一次。接下来,教师可以引导学生用图示的方法表示这两个课外小组的人员组成情况。由于学生以前没有接触过这种直观图,所以教师可以先出示一个空白图,让学生在不同位置填上相应的学生姓名。也可以利用多媒体软件先分别出示两个课外小组的集合圈,再把两个集合圈进行合并。接下来,可以让学生说一说图中不同位置所表示的不同意义,如中间部分表示同时参加两个小组的同学,左侧是只参加语文小组而不参加数学小组的学生,右侧是只参加数学小组而不参加语文小组的学生。最后,再让学生列式求出参加语文小组和数学小组的共有多少人。

  2.例2。

  ⑴本例利用天平的原理,使学生初步体会等量代换的思想方法,为以后学习简单的代数知识做准备。当天平平衡时,左右两边的物体同样重。所以,从第一个图中可以看出,一个西瓜重4千克,从第二个图中可以看出,四个苹果重1千克,让学生思考一个西瓜和多少个苹果同样重。在这里还不能直接运用等量代换,需要学生首先考虑:一个西瓜和4千克砝码同样重,4千克砝码和多少个苹果同样重呢?引导学生想出如果第二个图中天平的右边变成原来的4倍,左边也要变成原来的4倍(即16个苹果),天平才能保持平衡。

  教学本例之前,首先应该向学生说明:在本例中,我们假设每个西瓜同样重,每个苹果同样重。接下来,让学生观察前两个图并思考:天平保持平衡说明什么?一个西瓜和几个苹果同样重?让学生通过小组讨论来寻求解决问题的方法。如果学生自己解决有困难,教师可以进行适当的提示:从第一个图中知道一个西瓜重4千克,如果能知道多少个苹果也重4千克,问题就可以解决了。

  教学时,如果学生抽象地想像有困难,可以充分利用学具、多媒体软件等教学辅助手段,用直观的方式帮助学生理解,如用圆片代表西瓜,用小方块代表砝码,用三角形片代表苹果,通过摆学具,可以比较容易地找出相互之间的等量关系。

  ⑵“做一做”,利用三种小动物在跷跷板上保持平衡的情境进一步巩固等量代换思想的具体应用。要求2头牛和多少头羊同样重,首先要知道2头牛和多少头猪同样重,再利用猪和羊的质量关系进行等量代换。

  3.关于练习二十四中一些习题的说明和建议。

  第1题,首先要求学生根据不同的性质“会游泳的”和“会飞的”把这些动物进行分类,学生在分类的时候,可能不能一下子把既能游泳又能飞的放到中间位置,要引导学生明确两个圆圈相交的部分表示什么,再进行适当的调整。

  第2题,可以引导学生先把两天进的'货中重复的部分找出来,然后直接点数,或用加减法进行计算。

  第3题,如果学生抽象地想像有困难,可以让学生先用学具摆一摆。等学生用直观的方式解决了问题以后,再尝试抽象地推导一下。

  第4题,是等量代换思想的一种变式练习。直接比较1只鸡和1只鸭谁重一些比较困难,可以转化为2只鸡和2只鸭,或4只鸡和4只鸭的比较。

  第5题,是比较抽象的等量代换练习,实际上是二元、三元一次方程组的一种直观表示法。第1小题,把第一个等式中的△用□+□+□替代,就变成了□+□+□+□=240,所以□=60,而△=□+□+□,所以等于180。第2小题,直接用等量代换的方法来解决比较困难,可以先把三个等式的左边相加,右边相加,可得到2×(○+△+□)=200,所以○+△+□=100,然后再利用等量代换,依次求出○、△、□的值。

  四、教学建议

  适当把握教学要求。

  集合和等量代换的理论都是比较系统、抽象的数学思想方法,在这里,只是让学生通过生活中容易理解的题材初步体会这两种思想方法,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了,教学时老师不要使用集合、集合的元素、基数、交集、并集、等量代换等数学化的语言进行描述。

  1、参见“儿童空间定向的发展”-《学前儿童初步数概念的形成》【苏】A.M.列乌申娜曹筱宁成有信朴永馨译人民教育出版社1982年1月第1版

  2、参见“空间知觉的发展”-《儿童心理学》(1993年修订版)朱智贤著人民教育出版社1993年10月第1版

《数学广角》教案4

  一、 目标

  (一)知识与技能

  1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。

  2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。

  (二)过程与方法

  通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。

  (三)情感态度与价值观

  体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。

  二、 诊断

  “集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。

  三、教学重难点

  教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。

  教学难点:理解集合图的意义,会解决简单重复问题。

  四、教学准备

  多媒体课件、小白板、练习题卡

  五、教学过程

  (一)巧用对比,初悟“重复”

  1.观察与比较(课件出示图片)

  第一组;父与子

  (1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?

  第一种:无重复情况。

  黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。

  预设:列式一:2+2=4(人)

  第二种:有重复情况。

  汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。

  列式二:2+2=4(人)4-1=3(人)

  师追问:为什么减1?

  第二组:小棒拼三角形

  (1)3根小棒拼成的一个三角形。

  (2)提出问题:摆2个这样的三角形需要几根小棒?

  预设:可能会说6根,表示3+3=6(根)

  还可能会说5根,表示3+3-1=5(根)

  图片出示有重复情况的2个三角形。

  教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?

  2.思考与发现

  (课件出示)把2组有重复情况的图片放在一起。

  (1)提问:你发现了什么?

  学生思考,回答想法。

  教师要引导学生突出:(1)“重叠”或“重复”一词;(2)列式中“减1”的意义;(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。

  教师揭示课题,今天我们研究有重复现象的数学问题。

  【设计意图】设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。

  (二)善用例题,引入新课

  1.情境引入(课件出示“通知”)

  (1)了解信息,提出问题

  你认为三(1)班要选拔多少名同学参加这两项比赛?

  让学生尝试回答参加比赛的总人数。

  (2)出示名单,引发认知冲突

  课件出示三(1)班参赛学生的名单的统计表,让学生观察。

  2.观察名单,验证人数,初悟“重复”

  问题:仔细观察过这份报名表,你有什么发现?

  让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。

  (三)合作探究,体验过程

  1.策略分析

  谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?

  让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。

  借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。

  【设计意图】通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。

  2.探究方法

  (1)选出几种不同作品展示,理解分析不同整理方法。

  预设:方法一

  方法二:

  跳绳

  杨明

  刘红

  李芳

  陈东

  王爱华

  马超

  丁旭

  赵军

  徐强

  踢毽子

  于丽

  周晓

  朱晓东

  陶伟

  卢强

  方法三: 跳绳 即参加跳绳又参加踢毽子 踢毽子

  陈东 丁旭 杨明 于丽 陶伟

  王爱华 赵军 刘红 周晓 卢强

  马超 徐强 李芳 朱晓东

  (2)交流不同思想,比较各自的优缺点。

  (3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。

  课件出示:

  (4)介绍韦恩,拓宽视野

  课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的, 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。

  【设计意图】让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。

  3.辩论感悟

  谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点?

  让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。

  4.据图列式,运用集合图

  谈话:你了解图中各部分的意义吗?

  (1)课件演示各部分,让学生比较正确表述各部分的意义。

  (2)利用数据,列式计算出该班参加比赛的人数。

  指名学生计算,反馈交流,理解各算式的意义。

  可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)

  【设计意图】让学生借助直观图,理解集合图的.意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。

  5.变式练习,内化集合思想

  课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。

  跳绳

  9

  13

  17

  18

  25

  29

  33

  38

  42

  踢毽子

  17

  25

  28

  30

  31

  39

  40

  44

  教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。

  请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。

  师生小结。

  【设计意图】变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。

  (四)巩固应用,建构模型

  1.基础性练习

  (1)完成教材上105页“做一做”第1题.

  指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义

  2.趣味性练习

  3.拓展性练习

  估计三(3)班可能有多少同学参加比赛。

  讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?

  判断:参赛的同学最多有17人。( )参赛的同学最少有 8人。( )

  小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。

  【设计意图】设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。

  (五)全课总结,呼应课题

  师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。

《数学广角》教案5

  教学内容:人教版五年级上册第七单元第一课植树问题

  教学目标:

  知识与技能:

  (1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

  (2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

  (3)从封闭曲线(方阵)中发现植树问题的规律。

  过程与方法:

  培养学生观察能力、操作能力以及与人合作的能力。

  情感态度与价值观:

  学生通过观察、操作、交流等活动探索新知。

  教学重难点:

  教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:基本规律的提炼和方法的应用。

  教学准备:

  教具准备:课件

  学具准备:练习本

  教学过程:

  一、课前谈话。

  同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

  二、探究规律。

  (一)1.出示题目

  这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

  ①理解题意

  a、 指名读题,从题中你了解到了哪些信息?

  b、 理解“两端”是什么意思?

  指名说一说,然后实物演示。

  指一指哪里是小棒的两端?

  说明:两端要栽就是小路的两头要种。

  ②学生动手操作。

  拿出小棒,同桌间互相说一说,画一画,摆一摆。

  ③同桌互相讨论后,全班汇报交流

  a、指名说一说:你一共摆了多少根小棒?

  上黑板上来摆给大家看一看。

  b、数一数你们刚才摆的.小棒,它们之间有几个间隔?一共摆了几根小棒?

  c、间隔与种树的棵数有什么关系?

  ④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

  2.改变题目条件变为:

  在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

  1.学生试解答

  2.用小棒检验

  3.说一说你的想法

  间隔数与栽树的棵数又有什么关系呢?

  学生试说后,教师小结。

  4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?

  5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (二)出示例2

  1、学生读题,理解题意

  ①“两馆间的小路”指的是哪一段?

  ②“小路两旁”指的是要栽几边?

  2、学生互相合作,用小棒摆一摆

  师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

  要求完成:

  ①你一共摆了几根小棒?

  ②每一边的小棒根数和间隔数之间有什么关系?

  3、全班交流

  4、教师小结

  这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

  (三)用摆小棒的方法教学例3

  教师小结:两端封闭的情况下 植树棵数=间隔个数

  三、练习应用

  1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

  四、课堂总结

《数学广角》教案6

  知识与技能:

  1、使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用。

  2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  一、情境导入:

  1、同学们喜欢吃烙饼吗?谁烙过饼,或看家长烙过?能给大家说说烙烙饼的过程吗?

  2、烙烙饼中也有数学知识,这节课我们就到数学广角中去学习有关烙烙饼的知识。

  板书课题:数学广角

  二、探究新知

  1、教学例1

  1)出示情境图片:妈妈正在烙饼,每次只能烙两张饼,每面都要烙,每面3分钟。小女孩说:爸爸、妈妈和我每人一张,问:怎样才能尽快吃上饼?

  先独立思考,再小组讨论交流,说说自己是怎么安排的?自己的方案一共需要多长时间烙完?

  问:烙一张饼需要几分钟?烙两张呢?一共要烙3张饼,怎样烙花费的时间最少?

  问:还可以怎样烙?哪种方法比较合理?

  启发引导:在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的'锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?

  学生自由汇报

  观察理解情境图的内容

  找出题中的信息

  总共要烙3张饼。

  学生讨论汇报:可以一张一张的烙;

  烙一张饼要6分钟,烙3张饼要18分钟。

  可以先烙两张,再烙一张,这样只用12分钟,节省6分钟。

  先烙1、2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2、3号饼的的反面,有9分钟。

  2)创设情境,激发学生的学习兴趣,为学习新知做准备。

  使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  学生动手用硬币、课本来代表饼进行实验。

  问:如果要烙的是4张饼,5张饼......10张饼呢?

  怎样按排最节省时间?小组讨论交流,说说自己的发现。

  2、教学例2

  出示家里客人要沏查茶的情境图。

  小明,帮妈妈浇壶水,给李阿姨沏杯茶,怎样才能尽快让客人喝上茶?观察理解情境图。

  如果你是小明,你怎样安排?需要多长时间?和同学讨论一下,看看谁的方案比较合理。

  分小组设计方案,思考讨论:这些工序中哪些事情要先做?哪些事情可以同时做?

  比较:谁的方案所需的时间最少?谁的方案最合理?

  三、巩固新知

  1、书后做一做第1题

  假设两个厨师做每个菜的时间都相等,应该按怎样的顺序炒菜?

  2、书后做一做第2题

  小红应如何合理安排以上事情?

  四、小结:

  这节课你有什么收获?

  五、作业:做一做的第3题

  动手实验,并记录。

  讨论交流,说自己的发现

  观察图,讨论设计方案

  用过程图表示出自己的方案。

  学生选出最佳方案。

  学生独立完成后说说自己的理由。

  独立完成,全班订正。

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  通过练习,巩固所学的知识,教育学生养成合理安排时间的良好习惯。

《数学广角》教案7

  教学内容

  教科书第106-118页例题。

  教材分析

  本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

  教学目标

  1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

  2、使学生经历和体验复杂问题简单化的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  引导学生发现植树棵树与间隔数之间的关系。

  教学难点

  理解间隔与棵树之间的规律并运用规律解决问题。

  教学准备:

  多媒体课件、学具

  课时安排:

  1课时

  教学过程

  一、教学“间隔”

  1、教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一  我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

  通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

  3、引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

  板书课题:植树问题(两端都栽)。

  4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

  二、引导探究,发现两端要种的规律

  1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

  2、简单验证,发现规律。

  ①简单验证,发现规律。

  学生实践记录单

  出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

  同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

  b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。

  c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

  (1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

  全长(米)10 15 20 ┉

  间距(米)5 5 5 ┉

  间隔数(段)

  ┉

  棵树(棵)

  ┉

  (2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

  ②应用规律,解决问题

  教师:应用这个规律,我们能不能解决例1的问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

  3、解决实际问题(口答)

  ①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

  ②小组内各同学互相出题。

  小结:

  刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

  4、完成“做一做”

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

  教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

  三、应用规律,解决拓展

  1、植树问题(两端都栽)练习

  全路长(米)间隔距离(米)间隔数(个)棵数(棵)

  1 30 5

  2 50

  10

  3

  4

  21

  4 1000

  101

  2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

  3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

  四、谈谈你的收获?

  学生谈谈收获,教师总结。

  五、作业

  完成教科书练习

  六、板书设计

  植树问题(两端都栽)

  棵数=间隔数+1

  间隔数=棵数-1

  间隔数=总长÷间隔距离

  教学反思

  “植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的.能力。

  本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、重视数学模型的建立过程

  学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  二、注重数学思想的渗透

  在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

  三、注重探究精神和能力的培养

  教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

  一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

  二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

  这节课虽然取得了一些收获,但也有许多遗憾。

  一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

  二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。

《数学广角》教案8

  教学准备:教师用多媒体课件一套、每组学生准备一套衣服学具。

  教学目标与策略选择:

  排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测以及实验的方法可以找出最简单的事物的排列数和组合数。本册教材就是在学生已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。为落实新课程的理念,根据教材和学生实际,我组织许多与教学内容紧密相连的活动,运用小组共同合作、探究的学习方式,让学生互相交流,互相沟通,通过观察、猜测,实验等活动,向学生渗透数学思想,并初步培养学生有顺序地、全面地思考问题的意识。为此,将采取以下教学策略:1、创设生活情境,激发学习兴趣。2、动手实践体验,探究解决问题。3、关注合作交流,引发数学思考

  根据以上分析以及课标要求,我拟订这节课的教学目标为:

  1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

  2、培养学生有顺序地、全面地思考问题的意识。

  3、使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的.问题。

  4、使学生在数学生活动中养成与人合作的良好习惯,并初步培养学生表达解决问题的大致过程和结果。

  教学流程设计及意图:

  教学流程

  设计意图

  一、导入新课

  今天小丸子要带我们去一个很有趣的地方!出示:数学广角。

  二、情境一服饰搭配

  1、探究:既然参加活动,就要穿得漂亮些。衣柜里有这样几件衣服,小丸子一共有几种不同的穿法呢?

  (1)观察并同桌讨论

  (2)小组合作,动手实践

  老师为你们准备几种不同的搭配方法,每人选择一种搭配方法试试看。搭配的时候要注意怎么搭配才能不重复不遗漏。搭配好的小朋友可以和你组里的小朋友说说你是怎样想的。看看你们组有几种不同的方法。等下把你们认为组里面最棒的方法推荐给同学。

  2、归纳、演示:

  搭配方法一:用学具摆一摆。先确定上装,再确定上装。或先确定下装,再确定上装。

  搭配方法二:连线。

  搭配方法三:列式

  搭配方法四:用编号

  [备选]若学生提出其他搭配方法,只要有道理都给予肯定。

  3、小结:你们真能干,想出了这么多的办法,有的把所有的穿法都表示出来了,有的用画画的方法,有的用连线的方法,还有的用编号的方法,还有一些特别聪明的同学一下子算出了有六种穿法。而且一个都没有漏掉,也没有重复。那你最喜欢哪一种方法?为什么?怎么样才能做到不重复,也不漏掉?

  不管是用什么方法只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。

  三、情境2--早餐搭配

  1、出发前,小丸子的妈妈还为她准备了丰富的早餐(出示练习题中的早餐图)

  2、合理的早餐应该是一种饮料配一种点心,看看这儿共有几种不同的吃法?

  3、学生独立思考

  4、展示学生的方法,同时让学生说说自己的搭配方法。哪种方法更好?

  5、如果加上一杯果汁,一共有几种搭配方法呢?同桌互相说说想法。

  6、小结:生活中看似平常、简单的事情,都藏着数学知识,可见数学知识和生活的关系密不可分。学好数学知识,就可以解决生活中的许多问题!像这样的数学问题需要按一定的顺序思考,找出所有的搭配方法。

  四、情境三--游玩数字乐园

  1、探究:猜数游戏

  这个数是由937字组成的3位数,有几种可能性?

  你能不能像刚才穿衣服,吃早餐那样按一定的顺序,不重复、不遗漏地写出这些三位数

  3、独立思考

  再四人小组交流,互相学习。

  4、师生归纳:

  同学们都能有条有理地思考,不错!介绍一下,你们是怎样想的?

  这样想有什么好处吗?

  5、小结:这三个数字可以有条有理、按一定顺序地进行排列。可以先定百位,再写十位和个位,这样写就不会重复、不会遗漏。生活中有许多像这样的“排列组合”问题。

  6、确定范围:由9、3、7组成的最大三位数

  五、情境四--活动乐园

  小丸子要从儿童乐园经百鸟园到猴山(电脑出示练习题)在媒体上出示编号①②③④⑤有几种线路可以选择

  1、独立思考,指名回答。

  你能简单地画一画吗?

  2、师:是不是这6条路都要选呢?如果是你,你选哪一条?为什么?

  师:对,在生活中,可以根据实际情况,选择一条最佳路线。

  六、情境五--游戏乐园

  (一)跑道问题

  小羊小猴跟小虎要进行跑步比赛,一人一个跑道的话有几种不同的站法呢?

  (二)词语搭配

  “小”大搭配河,树,山,船你有几种搭配方法

  哪种方法好?

  同学们能从不同的角度想出不同的方法,并且能从中选出最佳方案。真了不起!

  四、情感沟通,全课总结:

  1、本次数学广角,你玩得开心吗?你最感兴趣的是什么?从这里你学到了什么吗?

  2、生活中经常会遇到,是不是所有的方案都要选择呢?怎么办?

  通过“猜想--讨论--实践--汇报--比较--归纳”等环节,充分展开探索过程。学生可以有各自的表达方法,包括数学化和非数学化的表达方式,从而体现解决问题的多样化和个性化。

  通过进一步的活动,给学生一个比较宽泛的问题,给学生探索的空间,初步培养学生有顺序、全面地思考问题,体验、经历数学活动的过程。

  选择最佳方案,联系了生活实际,体现数学的应用价值。

  与语文学科结合,数学的搭配理念也可以拓展到别的学科。

《数学广角》教案9

  教学目标:

  1.让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的思想方法。

  2.培养学生有序地、全面地思考问题的意识和合作学习的习惯。

  教学重点:

  利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想方法,为以后学习代数知识做准备。

  教学难点:使学生会运用等量代换这一数学思想方法来解决一些简单的实际问题或数学问题。

  教具、学具:卡片、课件

  教学过程:

  一、创设情境、提高兴趣

  1. 师:同学们,我们的童年生活在丰富多彩、游戏多种多样,跷跷板就是其中之一,你们玩过吗?好玩吗?(自由回答)

  师:想一想,玩跷跷板的两个人在体重上有什么要求?

  生:两人体重不能相差太多。

  师:三四班的甲同学体重50千克、乙、丙分别重25千克,假如甲和乙玩跷跷板会出现什么情况?

  生画图表示。

  师:如何使跷跷板平衡?

  生画图表示。

  2. 介绍天平

  师:天平的工作原理同跷跷板一样,下面请看大屏幕(flash画面伴有声音:同学们,大家好,我叫天平。在实验室里能见到我,当我平衡时,表示左右两边的物体同样重。)

  二、动手合作、探究就知

  1. 故事引入

  (flash画面伴有声音。)森林王国的熊妈妈生病了,小猴和小兔准备买东西去看望他。他们来到水果摊前,小猴对小兔说:“西瓜又大又甜,我们就买它吧。”于是他俩把西瓜放到天平上称了称,发现一个西瓜重4千克,小猴提了提:“哎呀,太沉了,我提不动。”小兔试了试:“我也不行。”正在他们俩不知怎么办时,售货员叔叔说:“西瓜和苹果都是1千克2元钱,你们可以把西瓜换成苹果,这样就一人一半了。”“对呀!叔叔的'主意好。”他俩高兴地说:“一个西瓜4千克,4个苹果1千克,假如每个苹果同样重,1个西瓜能换几个苹果?小朋友,你能帮我们算一算吗?”

  ①抓住时机,对学生进行思想教育,学会关心别人;

  ②师:你得到了哪些数学信息?

  生:从第一个图中看出,一个西瓜重4千克,从第2个图中看出4个苹果1千克,问题是一个西瓜和几个苹果同样重?

  师:请同学们用学具摆一摆。(教师巡视,适当指导)

  学生讲思路。

  师:熊妈妈见到两位小客人,心情十分高兴,病也好了一大半,决定邀请小猴和小兔去动物园逛逛,他们看到了什么?请看大屏幕。

  ①P109做一做。

  (flash画面伴有声音:森林王国动物园的跷跷板平衡游戏开始了。“我小猪先坐上去,谁来和我玩呀?”“小猪等等我,我们和你玩,呵,跷跷板平衡了。”“你们玩的这么开心,我也来凑凑热闹吧!”“老牛,我们四头小猪站在一起才能和你玩啊!”同学们,两头牛和几只羊站在一起才能使跷跷板平衡呢?)

  学生找出条件和问题。

  师:2头牛等于几只羊?应怎样思考,自己想一想,再交流讨论。

  师:边播放课件边讲解。

  ②看大屏幕(练习二十四4题)

  (flash画面伴有声音:“小鸡,你比我轻,我不想和你玩。”“臭鸭子,你才比我轻呢!我还不想和你玩呢。”在一旁的鹅听到后,赶紧跑来劝架:“别吵了,我和你们一起玩吧!”孩子们看到这里,你们知道一只鸡和一只鸭谁重一些?)

  学生讨论,汇报结果。

  播放课件,讲解。

  三、拓展内化 解决问题

  师:参观完动物园后,在回家的路上又碰到什么情况了?

  看大屏幕(练习二十四.3)

  (flash画面伴有声音:“灰兔哥哥,今天我们真是大丰收,我采了大萝卜,你采了这么多胡萝卜和白菜,我想用9个大萝卜换3棵白菜,行吗?”“白兔弟弟,行,那我也用6个胡萝卜换2个大萝卜吧。”等量代换游戏开始了,你们知道6棵白菜能换几个胡萝卜吗?)

  师:提示先求1棵白菜能换几个胡萝卜?

  学生可用学具摆一摆。

  课件展示:

  9个大萝卜=3棵白菜→3个大萝卜=1棵白菜

  6个胡萝卜=2个大萝卜→3个胡萝卜=1个大萝卜

  6棵白菜=?胡萝卜→1棵白菜=?胡萝卜

  (54) ← (9)

  四、布置作业(练习二十四.5)

《数学广角》教案10

  第八单元数学广角-数与形(教案)

  【教学目标】

  知识技能

  1.重视“数”“形”之间的联系,找到解题规律。

  2.引导学生探究算式左边的加数与大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。 过程与方法:

  1.借助“数”“形”之间的关系,解决相关问题。

  2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。

  情感态度价值观:

  在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。

  【教学重难点】

  重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。 难点:体验到数学的极限思想。

  【教具准备】

  教具:正方形块 ,课件。

  学具:完全相同的`小正方形纸卡若干

  【教学过程】

  一、激趣导入

  师:老师听说咱们班的同学很爱听故事,今天老师也带来了一个,这个故事叫 《形帮数》想听吗?

  生:想、、、、、、

  师:(出示第一张形与数的课件,背景音乐响起)在数学王国里住着数和形两个大家族,他们有时争吵,但更多的是互相帮助、、、、、、(故事讲完)同学们,你们知道形是怎么帮助数解决问题的吗?这节课让我们一起到人教版数学六年级上册第八单元 数学广角—数与形 中寻找它们解决问题的过程及方法。(板书课题)

  二、探究新知

  1.教学例1。

  (1)出示例题。

  2 2 1=(1)

  1+3=(2) 1+3+7=(3) 2

  (以故事的方式讲解)让我们再次回到故事中,形大步走到数的面前,挺着肚子 1 2

  说:“考考你,你算算我有多大?”数上下(转 载于:wWW.cSsYq.cOM 书业网:8单元数学广角数与形)打量了一下形:“哼!!小菜一碟,你是正方形,边长1厘米,面积等于边长乘以边长,就是1×1=(1) ;看到数能快速地说出来,形说:“别高兴的太早,后面还有呢!”接着它把和它长得一样大小的三个兄弟叫到它身边,和它站在一起,一个挨着一个,整齐地排成两排,(让学生拿出正方形按照形说的摆出来)形说:“那你现在能算出我们有多大吗?”数说:“你的面积是1,你的三个兄弟都是和你一样大小的正方形,它们每个的面积也是1,三个的面积就是3,你们四兄弟的面积是1+3=4,4是2的平方。”

  师:同学们,数算出来的结果对吗?你们也用其他的方法来算一算,帮数检查一下,看看结果是否正确?动手做在草稿纸上,做好的同学请举手。(引导学生用求大正方形的面积的方法计算:它们排成两排还是一个大正方形,不管是行还是列都由两个小正方形组成,边长也是两个小正方形的边长相加,所以大正方形的2 面积等于2×2=4=(2) )等学生完成之后,个别提问方法,让学生知道有两种方法来做。故事内容:“待数算完之后,形又把和它们一样大小的五个正方形叫到它们的身边,一个紧挨一个排成一个大正方形,你们知道形是怎样排列的吗?请你试着排列出来。”请学生上来排列,其他学生小组合作,教师巡视,指导学生列算式。检查结果,讲解过程。

  (2)小组合作:动手排列第四个,第五个图形并写出相应的算式,总结发现。 ①排列图形、观察、讨论。

  仔细观察,看一看上面的图形和算式左边有什么关系?

  ②汇报发现。

  发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;

  发现二:算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和。

  发现三:算式左边的加数和正好等于大正方形中每行(或每列)的小正方形个数的平方。

  [算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方]

  发现四:从1开始的连续奇数的和正好是这几个奇数的个数的平方。

  三、应用知识。

  1. 你能利用在《形帮数》的故事中找出的规律,直接写一写吗?(可借助学具摆一摆) 2 ①1+3+5+7=( ) 2 (1+3+5+7=4 ) 2 ②1+3+5+7+9+11+13=( ) 2 (1+3+5+7+9+11+13=7 )

  ③____________________=92 (1+3+5+7+9+11+13+15+17=9 2 )

  2. 请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+5+3+1 =() 5 2

  3.请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+9+11+13+11+9+7+5+3+1=( )85

《数学广角》教案11

  一、教材分析:

  烙饼问题是人教版四年级上册《数学广角》中的例1.(p112),主要让学生经历有目的、有计划、有合作的实践活动,完成如何操作最节省时间烙饼的问题,让学生在解决问题中体会合理安排,优化思想以及统筹的方法,与此同时,让学生结合烙饼情境,体验发现和提出问题,分析和解决问题的过程。让学生达到脑动、手动的效果,从而达到新课程标准下的“四基”要求。本节内容的安排符合学生的认知特点,数学来源于生活,服务于生活,为学生学习知识与实际生活相结合提供了良好的契机。

  二、教学目标:

  1.知识与技能

  (1)使学生通过生活中的实例初步体会统筹思想,理解合理安排的方法,在解决实际问题中的应用。

  (2)通过解决问题培养学生的思维能力。 2.过程与方法

  使学生经历合作、自主、探究的过程,认识到解决问题的多样性,形成解决问题最优方案的意识。

  3.情感态度与价值观

  使学生感悟到数学来源于生活并服务于生活,初步培养学生的应用意识,体验成功的喜悦,从而提高学习数学的兴趣。

  三、教学重难点:

  教学重点:使学生形成寻找解决问题最优化的意识。 教学难点:探究解决问题的.最优方案。

  四、教学课时:

  一课时

  五、教学用具:

  3张圆片、多媒体课件 六、教学过程:

  1.课前交流,营造学习气氛。

  师:同学们,看到你们这么精神,老师非常地高兴,我想在你们家里一定有这样一个人每天把你们照顾的无微不至,天冷了给你们加棉衣,无论在工作中有多么忙碌都会为你们做好一日三餐,她就是你们的(妈妈)。 2.情景导入,探索新知。

  师:①小红也有这样一个好妈妈,瞧 ,她的妈妈正在给她做早餐,做的什么呢?(烙饼),(出示课件)。 从图中,我们知道她的妈妈遇到什么问题了?妈妈在想如何才能尽快把饼烙出来?我们一起用这节课学习的知识帮她想想办法。板书课题——烙饼问题。

  设计意图:通过感知母爱,激发学生的学习兴趣,调动学生已有的生活经验,是学生处于主动思考问题的状态。

  ②聪明的小朋友们再仔细观察一下图片,你们知道烙饼的要求有哪些么?(随着学生的回答出示课件)。

  1.一个平底锅只能烙2张饼

  2.两面都要烙,每面需要3分钟。 ③教师提问:(1)妈妈烙一张饼最少需要几分钟?(6分)

  (2)如果妈妈要烙两张饼最少需要几分钟?怎么烙?(学生演示)。

  小结:一个平底锅最多能烙2张饼,可以先同时烙饼的正面,用了3分钟,在同时烙饼的反面用了3分钟,这样2张饼需要6分钟。

  (3)妈妈怕小红不够吃,想烙3张饼,但是锅里每次只能放两张,那怎么才能用最短时间烙出三张饼呢?

  ④学生合作交流,探究烙3张饼的方法。

  学生用圆片代替饼演示一下,组内成员计算用了几分钟,是怎样烙的?(圆片的两面分别写着正面和反面)教师巡视指导。 ⑤学生展示烙饼法。

  小组派代表上前边说边演示,记录时间,教师随着学生的演示展示课件3种烙法,让大家来比较。哪一种用时最短?

  得出结论:9分钟是烙3张饼最短的时间,我们给这种方法起个名字——叫做快速烙饼法。(教师板书)

  小结:教师出示课件,展示快速烙饼法的过程,让学生用快速烙饼法给组内成员演示。 设计意图:烙3张饼是解决烙饼问题的关键,学生通过合作、交流、探究烙饼过程,再进行比较,可以帮助学生理清思路,又为后面的学习打下基础。

  ⑥ 拓展延伸:烙3张饼所需时间是9分钟,想一想那4张饼呢,怎样烙时间最短?组内同学交流一下,试一试,看看哪个小组的方法最好。 学生展示烙4张饼的快速烙法。(2张2张的烙)用时12分钟,并完善表格。 提问:如果是烙5张饼呢?最少需要几分钟?组内交流,完善表格。

  教师小结后,如果烙6张饼呢?7张呢?8张呢?10张呢?最少需要几分钟? 设计意图:通过以上活动可以使学生找到最优方法,使优化思想在解决实际问题中得到应用。 ⑦探索规律。

  让学生仔细观察表格,小组讨论交流,说一说你的发现。

  (根据情况适当提示:①烙饼的张数与所需时间。②烙饼的方法有几种。) 出示课件,得出烙饼方法的结论。

  师:哪位同学能快速的说出烙11张饼最少用多长时间,15张饼呢?

  设计意图:通过拓展性的提问,对前面的知识进行巩固,为学生的思维发展提供空间。

  3.实践应用 4.总结新知

  畅谈收获:生活中还存在很多类似烙饼的问题,等你们去发现,去解决,你们成功的帮助了小红的妈妈,为了表示感谢,妈妈送给我们一首歌,我们来听一下。

《数学广角》教案12

  教学目标:

  1、通过一系列的猜测、比较、推理等活动,使学生感受简单的推理的过程,初步获得一些简单的推理经验。

  2、在猜测中让学生学会对于推理过程的简单叙述。

  3、培养学生初步的观察、分析及推理能力。

  教学重点:经历感受简单的推理过程,培养初步的观察,分析及推理能力。

  教学难点:培养学生初步的有序地、全面地思考问题的能力。

  教具准备:橡皮、智慧星、桂圆、荔枝、橘子等水果各一个、

  教学过程:

  一、激趣引入

  师:小朋友们,你们喜欢玩游戏吗?现在老师和大家一起做个游戏,你们愿意吗?

  (师出示两块不同颜色的橡皮,分别藏在左右手中,让大家猜一猜,左右手中是什么颜色的橡皮)

  生乱猜,师说你们能确定吗?(生答)

  师:现在老师给你们一个提示,我的右手拿的不是白色的橡皮,现在猜猜老师手里拿的是什么颜色的?能确定吗?说说你的想法。(生答)

  师:你们真棒!原来猜也有大学问,要想一次猜准就要有依据去猜才行,今天老师和大家一起走进数学广角,去玩一玩猜一猜的游戏,大家高兴吗?(板书:推理)

  谁能猜得准,说得好,谁就能得到老师送的智慧星,得智慧星多的同学就是本节课的数学明星,有信心吗?

  二、探究新知

  1、“猜名字”游戏

  师:在“数学广角”里有两位小朋友已经在等我们了,看,你们能猜出哪位是兰兰,哪位是红红吗?(生猜)大家能不能确定谁是兰兰,谁是红红呢?(不能),那何老师给大家一个提示。(出示:左边的小朋友说:“我不是红红”)可以猜出来了吗?能说说你是怎么想的吗?(生:左边的小朋友说她不是红红,那她就是兰兰,右边的小朋友就是红红了。)还有别的想法吗?(左边的不是红红,那右边的肯定就是红红,左边的就是兰兰了)。

  师:你们俩不但猜得准,而且说得也清楚,真不错!大家把掌声送给他们,老师也送你们一个礼物,是什么呢?(师预先准备两种颜色的智慧星)指一生:奖给你的不是红色的,那是什么颜色的?师追问思维过程。

  (师:你看!多聪明的孩子啊!两件物品,一种情况,只用两个词儿,两句话就把意思给表达出来了,谁再来说说?)

  谁愿意和大家说说为什么刚开始不能马上猜出来,而现在却很快就猜对了呢?

  师:是啊!当事情有两种情况时,要想一次猜准,需要根据提示先排除其中一种情况,再去猜。

  2、师生猜水果

  (1)老师这里有桂圆和荔枝两种水果,我想请一个同学一起藏水果,猜我们各拿的是什么水果?(先请学生拿一种水果,老师根据学生拿的告诉提示。)

  师:请听提示:我拿的不是XX,你们知道我们分别拿的是什么吗?说说理由

  (2)师再出示一些水果(小番茄、葡萄等),请一名同学任选两个水果放在背后,(师:来,先给小朋友们一个提示。)

  提示:我的左手不是桔子,那我的右手是什么?为什么?

  3、同桌合作,学生利用学具互相猜题

  (1)接下来,我们同桌来玩一玩这个游戏,这样,我们每个小朋友的桌上不是放着一个学具袋吗?袋里装着我们的学具,你可以选择其中的两个学具,和同桌玩一玩推理的游戏,注意:猜之前要先给同桌一个什么?(提示)

  (2)刚才我们玩的这些游戏都有一个什么共同点?(板书:2种物体,1个提示)

  我们接着往下学。

  4、游戏:生活中的推理游戏

  师:其实生活中经常会遇到这样的“推理”游戏,大家想猜猜何老师的一些事情吗?

  ①我喜欢打乒乓球,我握拍子的手不是左手,那是哪只手?

  ②我教的二年级班长不是女孩子,是——?

  ③我走路时,先迈的不是右脚,那是哪只脚?

  同学们反应真快!如果猜的事情有两种可能,我们就根据提示语去猜,不是这种情形,就是另一种情形。

  三、情境体验,完整表述推理过程(三种情况的猜测)

  1、“猜年龄”游戏

  师:兰兰和红红的好朋友亮亮听说我们在“数学广角”玩游戏,也赶来参加,欢迎吗?亮亮想考考大家,猜猜他们3人的年龄,他们分别是7岁、8岁、9岁,谁能一次猜出他们各自的年龄?(不能)那该怎么办?(提示)师出示:亮亮说:“我今年8岁了”现在可以确定了吗?(不可以)一个提示语够吗?(还得一个),师出示:红红说:“我不是7岁”。能确定吗?你是怎么想的?请同桌互相说说,(从亮亮的话中知道他8岁了,再根据红红说的“我不是7岁”,可判断红红9岁,兰兰7岁。)多指几名同学说推理的过程。

  师:要想保证一次猜准3种情况,需要几个提示语?(生:两个)

  2、“猜兴趣小组”游戏

  师:三种情况的`猜测,知道两个提示语,就一定能猜准确吗?

  兰兰他们3个小朋友和大家一样非常喜欢学习,他们利用课外活动时间分别参加了美术、舞蹈、书法兴趣小组,(贴出提示兰兰说:我参加了美术小组;

  红红说:我不参加美术小组,)“你们根据这两个提示能猜出3人各参加了什么小组吗?为什么不能?(这两个提示语是重复的)

  师再出示:也没有参加书法小组,现在能猜出来了吗?

  师生共同小结:要猜的事情是三种情况时,需要2个提示语,但不能重复,猜一猜时可以把直接告诉我们的放一旁,再根据猜两种情况的猜法去猜其余两种。

  四、课间放松游戏

  (师生一起做律动)

  拍拍你的肩,不是左肩,那是哪个肩?那是()肩。

  摸摸你的耳,不是右耳,那是哪只耳?那是()耳。

  踏踏你的脚,不是右脚,那是哪只脚?那是()脚。

  伸伸你的手,不是左手,那是哪只手?那是()手。

  五、应用拓展

  1、活动一(猜跳棋)

  师:出示三个纸杯,分别装着红黄蓝三种颜色的跳棋,你们分别猜出纸杯里装的是什么颜色的跳棋吗?(生答不能)

  现在老师给你一个提示(1号杯子里是红色的)现在你能才到吗?(生答不能)老师再给你一个提示,(2号杯子里不是蓝色的)

  这时你能不能判断了吗?(生说能,多指几名同学说推理过程)

  师小结:要想保证一次猜3种情况,需要知道几个提示?(两种)

  2、猜名次

  小刚、小明和小红跑步比赛,它们会是第几呢?

  小刚:我不是第一就是第二,

  小明:我在小刚的前面,

  小红:我是第三名。

  (师,根据提示,先确定小红,剩下第一名和第二名,根据小刚的提示有可能是第一,也有可能是第二,根据小刚的提示能确定一定是第一名,所以小刚是)

  六、课堂总结。

  同学们,在数学广角玩的愉快吗?有很多的收获吧!

  今天我们学的“猜一猜”,这其实是数学里的简单推理知识,希望同学们遇到这些问题时,能冷静地去判断、推理。

《数学广角》教案13

  教学内容:教材第108页例3及练习二十四相关题目。

  教学目标:

  1.通过观察、操作及交流活动,探索、建构封闭线路上“树的棵数=间隔数”的数学模型,并能利用数学模型解决类似的实际问题。

  2.在解决问题中,渗透数形结合思想和转化的方法,体会解决问题方法的多样化。

  3.培养学生从实际问题中探索规律,找出解决问题有效方法的能力。

  教学重点:发现封闭图形中的植树问题的规律,并能够解决简单的相关植树问题。

  教学难点:发现封闭图形中的植树问题的规律,并能够解决简单的相关植树问题。

  教学准备:多媒体课件、打着结的圆形绳。

  教学过程

  学生活动

  (二次备课)

一、复习导入

  1.前面我们一起探究了植树问题。沿一条线段植树,会有几种情况?每种情况下,植树棵数和间隔数有什么关系?

  2.导入课题。

  不论是两端都栽、两端都不栽,还是只栽一端,它们都属于线形植树。生活中还有沿圆形花坛摆花,沿正方形(长方形)草坪四周植树的'情况(课件展示)这样的植树问题。这节课我们就一起研究封闭图形的植树问题。

  二、预习反馈

  点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,什么问题)

  三、探索新知

  1.出示例3。

  学生读题,了解数学信息。

  2.交流探究。

  (1)提出问题:环形植树的间隔数和棵数又有什么关系呢?

  (2)小组合作,解决问题:利用画图等方法交流讨论得出封闭图形中植树棵数和间隔数的关系。

  3.汇报交流,发现规律。

  指名学生介绍自己的做法和发现。

  教师汇总学生的发现,得出规律:

  从图中我们可以看出,有一个间隔就总是有一棵树和它对应,所以,封闭图形植树时,棵数=间隔数。

  4.进一步理解。

  师:这个规律和哪种情况的规律是一致的?(一端栽一端不栽)它们之间有什么联系呢?

  教师利用打结的圆形绳,演示。从一个结处剪开,发现封闭图形中的植树转化为了“一端栽一端不栽”问题。

  5.解决问题。

  利用发现的知识,解决例3。

  学生独立完成。

  四、巩固练习

  1.完成教材第108页做一做。

  独立完成后集体订正。

  2.完成教材练习二十四第13题。

  解决方法多种:

  方法一:先求周长,再用“周长÷间隔长度=间隔数=棵数”算出一共要栽多少棵树。

  方法二:分别求四条边上各栽多少棵,再求一共栽多少棵,注意四个角上的树不能重复计算。

  3.完成教材练习二十四第11题。

  学生画图,总结规律,解决问题。

  注意:表示规律时方案可以不同。

  五、拓展提升

  1.在一个池塘周围要栽上柳树,每隔6m栽一棵树,池塘周长为420m,一共要栽多少棵柳树?在每两棵柳树之间栽2棵月季,一共栽了多少棵月季?

  420÷6=70(棵)

  70×2=140(棵)

  2.30名同学在老师画好的圆形场地周围玩“丢手绢”游戏。开始时,他们每两人间的距离是1.5m。玩了一会儿,有15名同学被淘汰,剩下的同学继续玩,间隔应改为多少米?1.5×30÷15=3(m)

六、课堂总结

  通过这节课的学习,你有什么收获?跟大家交流一下。

  七、作业布置

  教材练习二十四第12、14、15题。

  观看图形,发现都是在封闭图形上植树。

  教师根据学生预习的情况,有侧重点地调整教学方案。

  利用已有经验,可“化繁为简”选择一部分画图,得出规律。

  把封闭图形“化曲为直”。

  独立完成后集体订正。

  小组交流讨论,找出解决方法。

  学生尝试画图找到这类问题的规律,再解决问题。

  板书设计

  封闭图形的植树:棵数=间隔数

  一端栽一端不栽

  例3

  120÷10=12(棵)

  答:一共要栽12棵树。

  教学反思

  成功之处:这节课设计具体的操作体验,引导学生进行自主探索,对知识进行建构,体验探究的乐趣。

  不足之处:对封闭图形中的植树问题在实际生活中的应用处理比较仓促,学生理解不充分。

  教学建议:在教学中后面问题的呈现可借助画图或课件中图形演示的形式出现,有助于学生直观地理解。

《数学广角》教案14

  教学目标:

  1、知识与技能目标:通过观察、操作及交流活动,探索并认识封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。

  2、过程与方法目标:培养学生观察能力、操作能力以及与人合作的能力。

  3、情感与态度目标:让学生经历探索规律的过程,激发学生探索的'欲望。

  教学重点:让学生具体分析,建立模型、正确解答实际问题。

  教具准备:实物投影

  教学过程:

  一、创设情境,引入新课。同学们,生活中需要数学知识,对于具体问题,要具体分析,认真考虑,得到正确答案。来试一试:小明从一楼上到三楼用了6分钟。照这样的速度,他从一楼到八楼需要几分钟?

  二、探究新知,讲授新课:

  1、出示围棋盘。大家见过围棋盘吗?会下围棋吗?

  2、围棋盘上一个点可以放一个子。围棋盘的最外层每边能放19个棋子,最外一层一共可以摆放多少个棋子?

  3、在组内交流,然后汇报。

  4、还有其他的方法吗?

  5、小结:对于数学问题,不要急于算出答案,要先弄清楚题目意思,画画图,多想一会,找出正确答案来。还可以用不同的方法算出答案来。

  三、巩固练习,形成能力。

  1、121页做一做1。

  2、121页做一做2。

  3、121页做一做3。

  四、总结:这节课,你有什么收获?

  五、作业:

  六、板书设计:第3节数学广角

  19×2+17×2=7218×4=72

  第4节练习二十

  教学内容:122-123页

  教学目标:

  1、知识与技能目标:通过练习,进一步认识间隔排列中的简单规律,并能将这种认识应用到解决简单实际问题中去。

  2、过程与方法目标:能用不同的方法解决问题,提高学生的发散思维能力。

  3、情感与态度目标:体验数学问题的探索性,感受成功的乐趣,增强学习的信心。

  教学重点:能将这种认识应用到解决简单实际问题中去。

  教具准备:实物投影

  教学过程:

  1、122页练习二十第1题。先让学生独立解决问题,再组织全班交流。

  2、122页练习二十第2题。学生独立解答,如有困难,教师引导学生画线段图的方法帮助理解。

  3、122页练习二十第3题。先引导学生认识16根高压电线杆排列在一起,间隔的段数应是15段。然后让学生独立解决问题。

  4、122页练习二十第4题。先让学生画一个圆,再任意画几个点,数一数点的个数与分成的段数,看看他们之间有什么关系?

  5、123页练习二十第5题。先引导学生理解题意,让学生明白跑道的两端要插小旗,然后让学生独立解决问题,最后全班订正。

  6、123页练习二十第6题。先让学生观察插图,引导学生明确题意。

  7、123页练习二十第7题。先知道学生理解题意,然后让学生独立解决问题。

  8、总结:

  9、作业:

《数学广角》教案15

  教学内容:

  人教版义务教育课标实验教材(四上)112的例1

  教学目标:

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

  4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

  教学重点:

  体会优化思想。

  教学难点:

  探究解决问题的最优方案。

  教具准备:

  多媒体课件、探究用表格

  学具准备:

  三张圆纸片。

  教学过程:

  一、创设情境,生成问题

  1、同学们家里有厨房吗?你们进过厨房吗?进去做什么?厨房里有什么数学问题吗?

  2、我们来看看王华家厨房里的数学问题。(课件出示例1图)中午放学回家,王华发现妈妈正在厨房准备烙饼。(板书课题:烙饼问题)

  师:“从图上你能得到哪些信息?”学生观察、理解图中的内容。

  (这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)

  教师提问:“妈妈烙一张饼最少需要几分钟?” “如果妈妈要烙2张饼最少需要几分钟,怎样烙?”

  小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。

  师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?”

  二、探索交流,解决问题

  1、学生操作,探究烙3张饼的方法。

  让学生用发的圆片烙一烙,同桌说说用了几分钟,是怎样烙的。(圆片的正、反面上分别写着正、反两字来代表饼的`正、反面。)教师参与到小组活动中。

  (相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)

  2、学生演示烙饼法。

  师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)

  让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”

  得出结论:9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫快速烙饼法。(教师板书快速烙饼法)

  教师用课件演示烙三张饼的方法并小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。

  师:老师是用什么方法烙的?(也是用快速烙饼法)

  师:使用这种方法时,你发现了什么?

  (1、使用快速烙饼法,锅里面必须同时放2张饼。2、用的时间短。)

  让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。

  (烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  3、拓展延伸:

  师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  小组活动,通过小组交流,使学生找到最佳方法。

  教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”

  (通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

  在这样过程逐步形成课件表格.饼数

  2 3 4

  同时烙两张饼 快速烙饼法 两张两张地烙

  先烙两张,后三张用快速5 烙饼法

  两张两张地烙

  18 15

  烙 饼 方 法

  最少所需的时间(分)

  6 9 12

  7 8 9 10

  21 24 27 30

  4、探究规律。

  让学生仔细观察表格、小组讨论交流,说一说自己的发现。

  (根据情况决定是否给学生启示:

  1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?

  2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)

  学生在充分交流探讨的基础上,得出结论:

  1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。

  得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)

  教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”

  (通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)

  三、实践应用,内化提高

  课件出示114页做一做第1题。

  教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”

  1、引领理解题意。

  2、全班交流

  四、回顾整理,反思提升

  1、这节课你学到了什么?

  2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。

【《数学广角》教案】相关文章:

数学广角数与形教案11-15

《数学广角》教学反思10-22

五年级数学教案《数学广角》04-08

数学四年级下册教案广角04-07

初中数学 教案 02-24

数学新教案06-17

中考数学复习教案07-15

小学数学备课教案05-25

小学数学除法教案06-08

初中数学教案05-16