精选可能性教案模板汇编十篇
作为一名人民教师,往往需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。那要怎么写好教案呢?下面是小编精心整理的可能性教案10篇,希望能够帮助到大家。
可能性教案 篇1
学具准备:
学生学具:
1、每组一盒 3红3白(号盒子2红2黄2白,号盒子5白1红,发给左侧两小组)
2、分好6个小组,按坐的顺序定好1-6号,中间一人组长,培训组长、示范摸球。
教师学具:
1、四个硬纸板盒子(其中13号打印,塑封;还有一个用作放球用);三块黑卡纸;4红4黄4绿吸铁石。
2、教师有3个盒子,一号1白1红1黄(例题演示),二号7白(备10白1红),三号4红3黄(用作猜球练习)。
3、备红粉笔1支,确认磁性黑板,在黑板上布好点,放好12个吸铁石。
教学过程:
一、摸球
师:同学们一定在想,今天给我们上课的'怎么是杨老师?不过,杨老师上课可不空手,今天,我给大家带来了一盒球礼品,想不想看看?
生:想(很兴奋)
师:咱们看看。(满面含笑摸出一个球,高举这是一个),
生:齐答:黄球
师:(放进去再摸出一个),里面啊还有(生接:白球),还有(生接:红球)
师:(欣喜)这红球漂亮吗?(漂亮)想要吗?(想)
师:这红球可不是心里想要就要得到的,我得把这几种颜色的球放在一个盒子里,让小朋友们去摸,如果你摸到红球,就把它送给你,想不想试试?
生:(斩钉截铁)想
师:现在,老师这儿有三个盒子,都装了些什么球呢,瞧(贴,这是1号盒子,这是2号盒子,这是3号盒子)现在,如果你特别想从盒子里摸出一个红球,你会选择到几号盒子里去摸?1号、2号还是3号?
生1:第3个,生2:第3个,生3:第3个。
师:想摸3号盒子的举手。哇,你们都想摸第3个盒子?奇怪,为什么你们都选3号?
生:因为3号盒子全部都是红球。
师:追问:全部是红球怎么了呢?
生1继续:随便摸哪个球都是红球。 生2:先摸哪个球都是红球。
师:都这么想吗?还有补充吗?是呀,盒子里全是红球,任意摸一个,会怎么样啊?(贴一定摸出红球:数学上,我们可以说)
可能性教案 篇2
本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
1.体验事件发生的确定性和不确定性。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。
教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的
(1)主题图的教学。
教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。
需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。
(2)例1的教学。
教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。
教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。
①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。
②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。
③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教
科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。
④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的.”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。
⑤(3)例2的教学。
⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。
⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。
⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。
⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。
为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。
一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。
由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。
可能性教案 篇3
学习目标:
1.使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2.进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;
3.培养简单推理的能力,增强学习数学的兴趣。
教学重点:
用分数表示可能性的大小,理解分数表示可能性的实际意义。
教学难点:
灵活运用可能性的有关知识,解释并设计游戏活动。
教具准备:
多媒体课件
学习方法:
动手操作、实验法、观察思考
教学过程:
一、复习可能性的含义以及可能性的大小
1.出示下列四个图形:(投影出示)
2.提出问题:从( )号口袋中摸出的一定是红球;从( )号口袋中摸出的一定是绿球;从( )号口袋中摸出的可能是红球,也有可能是绿球。
追问:从上面哪两个口袋中摸球的结果是确定的,哪两个口袋中摸球的结果是不确定的?(确定 不确定)
小结:是呀,生活中有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的'可能性。
揭题:今天我们就来一起复习可能性。(板书:可能性)
3.提出问题:从上面图3或图4的口袋中摸球,从哪个口袋中摸出红球的可能性更大一些呢?
提问:你能用分数表示从③号和④号口袋中摸到红球的可能性的大小吗?
从③号口袋中摸到红球的可能性是( ), 从③号口袋中摸到绿球的可能性是( ), 从④号口袋中摸到红球的可能性是( ),从④号口袋中摸到绿球的可能性是( )。
二、指导练习。
1.做第1题。(投影出示)
指出:这里有4张圆盘,任意转动指针,指针停留的区域有以下几种情况,你能将它们连起来吗?
先让学生各自连一连,再指名说说思考过程。(多媒体演示)
2.做第2题。(将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。
(1)任意摸1个球,下面几种情况是“不可能发生”,还是“一定发生”或“可能发生”?
①球上的数是奇数; ②球上的数小于6;
③球上的数大于5; ④球上的数不是5;
先让学生各自判断,再指名说说思考过程。
(2)任意摸1个球,球上的数是奇数的可能性大,还是偶数的可能性大?
同桌讨论并说说为什么?
追问:你能用分数分别表示摸到奇数和偶数的可能性大小吗?
3.现有标上“1”“2”“3”“4”“5”“6”同样的6张牌。
(1)任意摸1张,摸出数字“1”的可能性为几分之几?
(2)任意摸1张,摸出数字为偶数的可能性为几分之几?
(3)任意摸1张,摸出数字为素数的可能性为几分之几?
(4)照这样操作下去,如果要使摸出偶数的可能性为7/10,你有办法吗?
三、材料分析。
在举行中国象棋决赛前夕,学校公布了参加决赛的两名棋手的有关资料。
李俊 张宁
双方交战记录 5胜6负 6胜5负
在校象棋队练习成绩 15胜3负 11胜5负
(1)你认为本次象棋决赛中,谁获胜的可能性大些?说说理由。
(2)如果学校要推荐一名棋手参加区里的比赛,你认为推荐谁比较合适?简要说明理由。
四、全课小结
五、课堂作业:设计销售方案。
超市有多种口味的果冻:有草莓味、柠檬味、苹果味。销售部接到了儿童乐园的一份订单,要求是:要在包装袋中装入若干个草莓、苹果、柠檬三种口味的果冻,要求从包装袋中摸到柠檬口味的果冻的可能性为。
可能性教案 篇4
教学目标:
1.使学生经历和体验收集、、分析数据的过程,了解和认识条形图(1格表示1个单位),初步学会用条形图描述数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2.使学生经历实验的具体过程,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3.培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重难点:
使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的'解释。
教学准备:
黄球3个红球1个
教学过程:
一、复习
1、同学们,请大家思考一下:在怎样的情况下,我一定能摸到红球。在怎样的情况下,我可能摸到黄球?在怎样的情况下,不可能摸到黄球?
2.在怎样的情况下,摸到红球与黄球的可能性差不多?
二、学习新知
1.今天我们继续学习统计与可能性(板书课题:统计与可能性)
2.请大家看,老师口袋里放了几个红球?又放了几个黄球?(3个黄球、1个红球)
3.如果每次摸1个球,摸10次,摸到哪种球的次数可能多一些?
4.分小组摸一摸,把摸到的情况记录下来。
5.出示书上的两种方法,一种是每次涂一个方块做记录。另一种是每次涂一个方格做记录,涂成条形图。
6.在小组充分摸球的情况下,请学生把摸球的结果,在书上予以记录。
7.统计的结果和你的估计差不多吗?你发现了什么?在小组里进行交流。
8.全班进行交流:在黄球与红球不一样多的情况下,红球如果多,那么摸到红球的可能性就大一些;如果黄球多,那么摸到黄球的可能性就大,也就是说:在两种球不一样多的情况下,哪种球多,那种球摸到的可能性就大。
三、巩固练习
1.做书上“想想做做”的第1题。
做一个小正方体,四个面上写“1”,一个面上写“2”,一个面上写“3”。把小正方体抛30次,在书上用涂方格的方法记录“1”、“2”、“3”朝上的次数。在条形统计图里你发现了什么?
2.做书上“想想做做”的第2题。
在布袋里放4枝铅笔,怎样放才可能分别达到下面的要求?
(1)每次任意摸一枝,摸50次,摸到红铅笔的次数比蓝铅笔多。
(2)每次任意摸一枝,摸50次,摸到红铅笔的次数比蓝铅笔少。
四、课堂
这节课我们一起学习了什么内容?你有什
么收获?有没有什么疑惑?先在小组里和你的同桌相互说一说。
可能性教案 篇5
【教学目标】
1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。
2.了解事件发生的可能性大小是由发生事件的条件来决定的。
3.会在简单情景下比较事件发生的可能性大小。
4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。
【教学重点、难点】
教学重点:认识事件发生可能性大小的意义。
教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小
【教学过程】
一、 创设情境引入新知
提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?
为了解决这个问题,可先让学生分小组进行摸球游戏:
1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。
2、做20次这样的活动,将最终结果填在表中。
3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?
4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?
游戏的结论:
在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。
一般地,不确定事件发生的可能性是有大小的。
说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。
二、观察思考 理解新知
请考虑下面问题:
(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?
分析:根据本人的实际棋艺水平来确定,答案不唯一。
(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?
分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。
(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?
分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。
(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?
分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。
从上可得出以下结论:
①事件发生的可能性大小是由发生事件的条件来决定的`。
②可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
三、师生互动运用新知
例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?
分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。
完成P76 1,2的做一做
例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.
分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:
(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;
(2)将上述结果列表或画树状图;
(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;
(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。
完成课内练习1,2
四、梳理知识 形成结构
通过本节课的学习,谈谈你的收获?
在交流中,师生可共同梳理知识点:
(1)事件发生的可能性大小是由发生事件的条件来决定的。
(2)可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
五、应用新知 体验成功
1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?
答案: 2的倍数可能性哪个大。
2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?
答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。
3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。
答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。
4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?
答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。
5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?
讲故事 5张
唱 歌 3张
跳 舞 1张
答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。
6、联欢会上小红可能抽到什么节目?
抽到什么节目的可能性最大?抽到什么节目的 可能性最小?
答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。
7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?
答案:
朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。
一次正面朝上,另一次正朝面下发生的可能性大。
六、布置作业巩固新知
作业题:1 — 4必做5、6选做。
可能性教案 篇6
教学目标:
1、学生能够预测简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、使学生能够对一些问题简单事件发生的可能性作出描述。
3、培养学生分析问题,解决问题的能力。
4、思想教育:在引导学生探索新知的过程中,培养学生合作学习的意识以及养成良好的学习习惯。
教学重、难点:
1、使学生能够预测简单试验所有可能发生的结果,知道事件发可能性是有大小的。
2、能够对一些简单事件发生的可能性作出描述。
教具准备:
硬币、红球、黄球若干、空袋子
教学过程:
一、创设情景,激发兴趣
师:同学们猜猜看,老师手里握着什么?(学生猜一猜)
师伸手出示一枚硬币。请大家再猜猜看,老师把硬币向上抛起,落下时会正面向上呢,还是反面向上?(学生猜一猜)看来,生活中存在着非常多的可能性。(板书课题)可能性已经是我们的老朋友了。下面,我们和这位老朋友一起来做一个小游戏
二、男女生摸球比赛
1、游戏规则:选出的'男女队员各2名分别从盒子里摸出一个球,各摸十次,摸到黄球可以加一分,摸到红球不加分
为男生准备的盒子:9个红球1个黄球。
为女生准备的盒子:1个红球9个黄球。
2、比赛开始(现在男女队员已经摸完球了,咱们来统计一下两队摸球的情况,老师记录。
3、仔细观察统计结果,你发现了什么?总结:女队获胜。
4、男生交流失败的原因。
5、得出结论:可能性有大有小。(板书)
师:为什么女生摸出黄球的可能性大?男生摸出黄球的可能性小?什么原因造成的?
(板书:数量 多 少)
集体交流:数量多的,可能性就大;数量少的, 可能性就小。
6、师:那这样的比赛公平吗?男同学服气吗?那我们再来一次公平的比赛。(两个盒子装上同样多的黄球和红球,再来一次)
比赛之前,大家预测一下,这次谁获胜的可能性大一些?(学生猜一猜,到底会怎样呢?我们来一起验证一下)
(渗透 数量相等时 可能性一样大)
可能性教案 篇7
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的.一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重点:
通过活动认识一些事件发生的等可能性。
教学难点:
理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。
教学准备:
多媒体,红球3个 黄球3个
教学过程:
一、创设情境,激趣导入。
1.出示装有3个红球的袋子
(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)
(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)
2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)
二、活动体验,探索新知。
1.摸球。
(1)猜测。
(出示上述装有3个红球和3个黄球的透明口袋)
谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?
学生自由猜测
(2)验证。
谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)
①明确活动要求。
谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。
②明确统计方法。
提问:怎样能记住每次摸球的结果呢?
以前我们用过哪些方法来记录?(画、涂方块)
可能性教案 篇8
3.1 认识事件的可能性(教参)
【教材分析】
(一)教学内容分析:本节课内容属于概率范畴,意在帮助学生分清不确定的现象和确定的现象,使学生能定性地认识事件“可能、不可能、必然”发生的含义.让学生学会怎样用观察的方法去认识身边的不确定现象的数学规律.
(二)学情分析:学生在日常生活中接触过一些不确定的现象,但他们对这些不确定现
象的观察往往是零星的,短暂的.同时,学生对未知的事物又充满好奇且敢于质疑,很愿意投人到合作探究的实践活动中去.在学生小学阶段已学的有关事件可能性的认识的基础上,进一步使学生通过实例体会到可以用列举法来获得各种可能的结果数,从而使学生的认识达到升华.
【教学目标】
1.通过实例进一步体验事件发生的可能性的意义.
2.了解必然事件、不确定事件、不可能事件的概念.
3.会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件.
4.会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数.
【教学重点、难点】
1.事件发生的可能性的意义,包括按事件发生的可能性对事件分类.
2.用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点.
(基于对教材、教学大纲和学生学情的分析,制订相应的教学目标.同时,在新课程理念的指导下,注重对学生的动手能力、合作交流能力和对学生探究问题的习惯和意识的培养.这里没有用“使学生掌握…”,“使学生学会…”等字眼,保障了学生的主体地位,反映了教法与学法的结合,体现了新教材,新理念.)
【教学过程】
一、激趣、设疑、引题
同学们做过抛掷硬币的`游戏吗?请你试一试抛一枚硬币10次,把结果记录下来,看看有几次正面朝上,有几次反面朝上?
做完游戏后,提出问题:
(1)抛掷硬币10次,每次都正面朝上或反面朝上,可能吗?可能性大吗?
(2)在刚才的游戏中,可能正反面同时朝上吗?
(3)在刚才的游戏中,还有哪些事件一定会发生?你能得到哪些结论?
事实上在我们的周围有很多事件一定不会发生,有些事件可能会发生,也可能不会发生,有些事件必然会发生.
引出课题:认识事件的可能性.
(利用学生都感兴趣的小游戏引入,可以激发学生的学习欲望,让他们迅速投入到数学知识的学习中,同时加强了人文数学的教育)
二、观察、思考、巩固
(一)观察和思考:你能举出几个生活中必然发生,不可能发生,
可能发生的例子吗?(请大家发言)
不仅在现实生活中有很多例子,而且在我们所学的各学
科中也有很多例子.(利用多媒体展示“铁杵磨成针”“守株待兔”
“愚公移山”这三个成语故事和天气预报的动画)
同时给出必然事件、不可能事件和不确定事件的概念:
在数学中,我们把在一定条件下必然会发生的事件叫做必然事件(certainevent);
在一定条件下必然不会发生的事件叫做不可能事件(impossibleevent);
在一定条件下可能发生,也可能不发生的事件叫做不确定事件(uncertainevent)或随机事件.
(这里用贴近学生生活的事例和动感十足的多媒体展示,不但能激起学生的学习兴趣和热情,而且能让学生感受到数学与现实生活以及其他学科之间的联系,增强学生应用数学的意识.)
(二)巩固、检测、反馈(利用题组区分概念):
在课件巾设置能力区分度不同的三组题,以利于同学们正确理解概念.
1.头脑运动会(设置一组容易题,以快速抢答的方式请同学在规定的时间内给出正确答案,对于没有把握的问题也可以向其他人求助.)
问题:下面哪些事件是必然事件?哪些事件是不可能事件?哪些事件是不确定事件?
(1)打开电视机,它正在播广告;
(2)抛掷10次硬币,结果有3次正面朝上,8次反面朝上;
(3)将一粒种子埋进土里,给它阳光和水分,它会长出小苗;
(4)黑暗中我从我的一大串钥匙中随便选中一把,用它打开了门;
(5)抛掷一枚均匀的骰子.掷得的数不是奇数就是偶数;
(6)从一副洗好的只有数字1到l0的40张卡片中任意抽出一张,卡片上的数比6小;
(7)一个普通的玻璃杯从10层楼落下,落到水泥地上会摔破.
2.头脑风暴.
例在一个箱子里放有1个白球和1个红球,它们除颜色外都相同。
(1)从箱子里摸出一个球,是黑球.这属于那一类事件?摸出一个球,是白球或者是红球.这属于哪一类事件?
(2)从箱子里摸出一个球,有几种可能?它们属于哪一类事件?
(3)从箱子里摸出一个球,放回,摇均匀后再摸出一个球,这样先后摸得的两球有几种不同的可能?
(列表或画树状图是人们用来列出事件发生的所有不同可能结果的常用方法,它可以帮助我们分析问题,而且可以避免重复和遗漏,即直观又条理分明.)
不可能事件 可能事件 必然事件
|a|的值
a的倒数
若a+b=0(a,b的之间关系)
3.个性空间(设置一组稍难题,对所学知识进一步巩固).
问题1:列表造句:
问题2:(1)有2种不同款式的衬衣和2种不同款式的裙子,各取一件衬衣和一条裙子搭配,问有多少种搭配的可能?
(2)笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子的门都打开.松鼠要先经过第一道门(A,B或c),再经过第二道门(D,或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?
(在完成了两组区分度不同的练习之后,对于培养学生合作学习,激发学习兴趣都有帮助,至此本节课的教学目标已达成)
(三)完成课本课内练习.
三、概括、梳理、升华
1.采用谈话式小结.教师提问:
(1)你在这节课的学习中,最大收获是什么?
(2)你对哪一点最感兴趣?
(3)你受到哪些启迪?
(4)你还有什么新的发现?
(这种小结方式很容易沟通师生之间的感情,学生容易投入和参与,让学生自由说出自己的想法,把总结评价的主动权充分地交给学生,同时给学生一个开放的思维空间,培养学生的知识整理与语言表达能力,情绪会被再度调动起来,从而起到认知升华的作用)
2.判断一个事件是属于必然事件,不可能事件,还是不确定事件.用列举法统计简单事件发生的各种可能的结果数.
四、布置作业
1、课本作业题
2、1999年,全国少工委与中国青少年研究中心调查显示,46.9%的中小学生没有达到8时的睡眠时间标准,请你在班级里也做一次调查,你的结论是什么?
可能性教案 篇9
教学内容:
人教版小学数学教材五年级上册第44页主题图、例1、第45页“做一做”及相关练习,第49页“生活中的数学”。
教学目标:
1、初步体验事件发生的确定性和不确定性,能列出简单的随机现象中所有可能发生的结果。能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
2、借助猜测、实验、交流等活动,培养学生的逻辑思维能力和口头表达能力。
3、通过学生对确定现象和不确定现象的体验,体会数学和日常生活的密切联系。
教学重点:
通过活动,使学生体验事件发生的确定性与不确定性。
教学难点:
使学生能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
教学准备:
课件、节目卡片、抽奖盒。
教学过程:
一、游戏导入,激活经验
(一)游戏1:猜猜硬币在哪只手里。
1、教师将枚硬币握在手中,并在背后交换位置,让学生猜一猜硬币在哪只手里。说一说你能确定吗?
2、教师打开没有硬币的手,再让学生猜一猜硬币在哪只手里。说一说你能确定吗?为什么?
(二)游戏2:猜猜抛出的硬币是正面朝上还是反面朝上。
1、教师将这枚硬币抛出,让学生说出可能是哪个面朝上,要求说出所有可能。
2、让学生猜一猜是哪个面朝上。
3、教师揭示结果。
(三)揭示课题。在生活中有些事件的发生是确定的,有些是不确定的。今天我们一起来探究事件发生的`可能性。
【设计意图】通过游戏激活学生的生活经验,初步感知事件发生的确定性和不确定性,为学生进一步探究奠定坚实的基础。
可能性教案 篇10
教学内容:
小学数学苏教版国标本第五册P92-93的内容
教学目标:
1、体验有些事件的发生是确定的,有些则是不确定的;
2、知道事件发生的可能性是有大小的;
3、培养学生学习数学的兴趣,形成良好的合作学习的习惯。
教学重点:
使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释。
教学难点:
在实验过程中引导学生形成正确的科学认识。
教学理念:
放手让学生做实验的主人。
教学设计:
教学步骤
教师活动过程
学生活动过程
一、创设情境,导入新课
1.学生们,我们来开展一次摸球比赛,好不好?每人轮流摸一次球,哪个队摸到的白球次数多就取胜。
请出8名男同学和8名女同学分别组成男生队和女生队,我们来进行男女生对抗赛。(每次摸之前把球先搅动几下。)
2、每队拿一个袋子,袋子里装着白球和黄球。
(男生队的袋子里3白1黄,女生队的袋子里34黄1白)
3.(比赛结束后)哪个队获胜?
4.(取出内袋)女生队,你们有什么想说的?男生队为什么会赢?
师:因为袋里的白球和黄球的个数不同时,摸到的可能性就有大有小了。
让学生先估计。
学生实践。
让学生结果进行讨论。
教学内容
教师活动过程
学生活动过程
二、实践探索,初步体验
三、做做想想,深化认识
今天我们就要来研究这方面的内容。
(板书课题:统计与可能性)
1.师生互动:
(1)同学们,你们想不想自己来摸球?
刚才在摸球比赛时大家是通过数的方法来得到他们摸球的结果,这次我们要用涂方格的方法来统计摸球的情况。
(2)请两名同学上来摸球,老师进行统计。
2、学生小组操作(出示要求):
(1)在还没摸之前,请大家猜一猜,白球会摸到几次?黄球会摸到几次?
(2)大家的.猜测是否正确呢?下面请组长负责记录,其他组员轮流摸球,看哪一组完成得又快又好!
(3)完成后观察统计的结果,你发现了什么?
3、交流。
(一)抛正方体
1、做完了摸球游戏,下面我们要来玩抛正方体。
(1)请大家猜一猜,会出现什么结果?
(2)出示统计表,师简要说明。
(3)分组活动,师巡视。
(4)展示交流,指着统计图说说你们的结果,算出四个组的合计数,你发现了什么?为什么?
(5)如果要让“1”出现的次数更多,怎么办?
学生看桌上的袋子里面装了哪些球?
学生估计谁是胜者。
学生分组活动,师巡视。
学生展示统计结果,并进行小结。
说说从中发现了什么?
学生进行讨论,如有必要安排实验。
教学内容
教师活动过程
学生活动过程
四、联系实际,灵活运用
(二)连一连
1、过渡:刚才我们通过摸球,抛正方体,知道了当条件不同时,所产生的可能性是有大小的。下面请大家看一看,这些结果是怎样产生的?
3、连一连,并说说为什么?
安排运动会:
(1)我们学校的喜事接连不断,在前不久举办的江都市小学生田径比赛重,我校的田径队获得了全市第一名。这一切都离不开田径队平时的艰苦训练。再过几天,10月份我们学校举办学校田径运动会,具体日子还没定下来,你们认为选什么样的日子比较好呢?
(2)在我们每组的桌上都有一份1994年到20xx年三月份的天气情况,请小组讨论一下,你们准备选哪一天?为什么?
(3)交流
(4)小结:大家的选择都很有道理,我会把它转告给篮球比赛的负责人,我相信一定会采纳大家的意见的!
学生活动
(1)在小正方体的2个面上写“1”,2个面上写“2”,2个面上写“3”。
(2)把小正方体抛30次,用涂方格的方法记录“1”、“2”、“3”朝上的次数。
让学生对实验结果进行分析。
(3)出示P93第4题,学生独立完成。
学生小组合作,先进行讨论选择什么天气的日期。
分工合作在已有的就日历中寻找理想的日期。
每个小组推举一名学生汇报结果。
教学内容
教师活动过程
学生活动过程
五、全课总结
同学们,今天这堂课你有什么收获?
教师小结:在我们生活中,有很多事件的发生都是有它的可能性,而且可能性是有大小的。不过在很多时候,我们可以根据一些条件,来预测可能性的大小
学生举手发言,汇报本课的收获。
教学理念:(教学设计说明)
这节课的内容是通过实验让学生初步体会有些事件发生的可能性是相等的,有些事件发生的可能性是有大有小的,引导学生积累判断事件发生可能性大小的经验。在教学设计中注意了以下几点:
1.放手让学生做实验的主人,通过实验这一教学途径来达成教学目的的。
2.突出了让学生在数据收集整理的基础上建立对事件发生可能性大小的清晰体验。
3.不能满足于引导学生经历实验的过程,在经历过程的基础上引领学生对其中的数学思想和知识有所体验和感受,并能还原于生活,运用于生活。
【可能性教案】相关文章:
可能性教案02-28
冀教版可能性教案05-13
关于可能性教案汇总八篇04-06
精选可能性教案锦集9篇04-12
有关可能性教案合集五篇04-15
可能性教案合集十篇04-15
可能性教案集锦五篇04-14
可能性教案模板集锦7篇04-14
可能性教案集合八篇04-15
关于可能性教案汇编九篇04-09